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2.1 Introduction

The Feb. 16, 2001, issue of Science and Feb. 15, 2001, issue of Nature contain the first anal-
yses of the working draft human genome sequence (Consortium, 2001; Venter, 2001). Two
years later, the 50th anniversary of the publication of the landmark paper by Nobel laureates
James Watson and Francis Crick that described DNA’s double helix (Watson and Crick, 1953)
coincided with the official completion of these drafts, concluding one of the most ambitious
scientific undertakings of all time. While genome sequencing has nowadays largely become a
well-controlled industrial process, it is just one among a number of technical breakthroughs
made possible by the biotechnological progresses of the last decades, that are revolutionarizing
biology. Many other less visible technologies are synergetically changing biology by providing
new methods to observe, monitor, and test, often on a large scale, biological and biochemical
systems. To name just a few, DNA microarrays (Schena et al., 1995) allow the monitoring
of the expression level of tens of thousands of transcripts simultaneously, opening the door to
functional genomics, the elucidation of the functions of the genes discovered in the genome
(DeRisi et al., 1997); high-throughput clone generation and sequencing also enabled the devel-
opment of genome-wide mutagenesis (Coelho et al., 2000) and RNA interference experiments
(Kamath et al., 2003), providing complementary informations about gene functions; recent ad-
vances in ionization technology have boosted large-scale capabilities of mass spectrometry and
the rapidly growing and maturing field of proteomics, focusing on the systematic, large-scale
analysis of proteins (Aebersold and Mann, 2003); miniaturization and progresses in material
science led to new assays used in high-throughput screeming of chemical compounds in the
pharmaceutical industry.

This fast accumulation of technical and scientific breakthroughs support the idea that we
enter a very exciting period where questions in biology, ranging from the development of in-
novative and individualized therapies to the molecular description of cognitive functions, are
expected to dominate the scientific landscape. Indeed, the apparition of these high-throughput
technologies raises new hopes in our capacity to better apprehend and dissect the inherent
complexity of living systems, and to transform this new knowledge into practical innovation,
in particular in the biomedical field. A common pitfall of most new high-throughput meth-
ods, however, is that they tend to deliver much less than the hopes they raise, at least on the
short term. While pharmaceutical companies complain that the average cost of developing
new drugs only increases as new “-omics” are integrated, the conclusion of the human genome
sequencing and of the wide use of DNA microarrays have only highlighted the complexity
of living organisms and the difficulty to extract useful information from the flood of data
generated by high-throughput technologies. On the good side, however, these techniques and
data are laying the foundations of a new quantitative biology, and are changing in depth our
representations of living systems, thus paving the way for possible scientific breakthroughs.
While its objects of research in the post-genomic era remain living systems, the fast evolving
biological science requires a unique integration of concepts and methods from outside of tra-
ditional biology; in particular mathematics, computer science and physics play an increasing
role in the advances of biology. Data need to be stored, organized, processed, and integrated
into models to validate or generate hypothesis, and suggest new experiments.

I was lucky enough to start my scientific carrier in this exciting period. While my ed-
ucation had been dominated by mathematics, I have always kept a strong interest in the
applications of mathematics to other fields, and a fascination for biology. My PhD thesis
(Vert, 2001b), focused on adaptive statistical estimation methods for text processing, gave me
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a first opportunity to manipulate the E.coli and HIV genomes through a collaboration with
my supervisor Olivier Catoni, Bernard Prum and Cécile Cot, from the University of Evry.
My postdoctoral studies started a few days after the publications of the first draft of the hu-
man genome, with an 18-month visit to Minoru Kanehisa’s laboratory in Kyoto University’s
Bioinformatics Center, followed by a 2-year period as the leader of a newly-created research
group on computational biology at the Ecole des Mines of Paris. This period was not suffi-
cient to complete my still limited education in molecular biology, but opened my eyes on the
breathtaking scientific stakes of this post-genomic era, and on the new challenges raised at
the interface of biology, mathematics and computer science. I decided to focus my energy at
this interface, and discovered the difficulties and joys of multi-disciplinary research, torn apart
between the requirements of rigor and aesthetic of mathematics, performance and tricks of
computer science, results and interpretation of biology. Accordingly my modest contribution
to this field, summarized below, has globally been constrained by three requirements which
I consider as important safeguards in the development of a useful theoretical framework for
post-genomic biology:

e Starting from actual biological problems and using real data;
e Developing methods and concepts that lead to implementable and efficient algorithms;

e Providing a rigorous mathematical framework to represent the data and justify the
methods proposed.

My long-term scientific objective is to contribute to the development of rigorous mathe-
matical frameworks useful to conceptualize our rapidly changing representation of life and to
make prediction about or understand biological phenomena. In order to resolve the possible
contradictions between such an ambitious objective and the need to have a scientific contri-
bution on the short term, I have so far mainly focused my work on two concrete and related
issues, which can be considered as major bottlenecks in the current post-genome era, although
solutions have started to emerge in the recent years:

1. How to represent data as diverse as genome sequences, protein 3D structures, gene
expression data, gene regulatory or interactions networks, etc..., in a common theoretical
framework, and develop methods to 1) compare, analyze these data, and 2) predict
biological properties by integrating this heterogeneous information? This question is
motivated by the current difficulty to make sense out of the wealth of heterogeneous
data available and generated everyday.

2. How to formally relate and put in a common theoretical framework data about individual
biological objects (genes, proteins, metabolites...), on the one hand, and representations
of biological systems, on the other hand, such as a graph with individual biological ob-
jects as vertices? This framework should in particular provide efficient methods to infer
biological systems from high-throughput data about individual objects. This question
is motivated by the vision that has emerged in the last few years in the field of systems
biology (Kitano, 2001), that suggests that the complexity of life arises from complex
interactions between a finite number of basic elements.

For reasons detailed below, I started to investigate in 2001 the possible use of positive
definite (p.d.) kernels to represent various types of genomic data (Section 2.2). In order to
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make this approach practical, I proposed several new kernel functions for particular types of
data (Section 2.3), and more generally investigated several systematic approaches to kernel
design (Sections 2.3.1, 2.3.4). Part of the bestiary of kernel functions that were invented
for specific type of data and applications in computational biology are reviewed in the book
B. Scholkopf, K. Tsuda and myself edited recently (Scholkopf et al., 2004). These kernel
functions allow most genomic data about a fixed set of genes (typically all genes of a given
organism) to be represented simultaneously in a rigorous framework, and enable the use of
kernel methods, such as support vector machines (SVM), for various data analysis or inference
tasks. Furthermore, heterogeneous data integration, though not a mature fields, can be easily
performed by in this framework by performing operations on kernels that conserve the positive
definiteness property.

It also turns out that this approach, initially investigated as a possible solution to the
first question above, lends itself particularly well to the development of original methods to
tackle the second question, that is, to relate biological data with biological systems. In this
case, the main challenge is not to develop new p.d. kernels, but rather to imagine methods in
this framework to compare biological data with biological systems, or typically infer biological
networks from biological data (Section 2.4).

Section 2.5 will conclude this short research summary by mentioning a few research direc-
tions I plan to investigate in the future.

2.2 Kernel methods in computational biology

As opposed to other traditionally data-rich fields, data generated in modern biology are of-
ten structured (e.g., protein interaction network, gene sequences, evolutionary tree), high-
dimensional and noisy if vectorial (e.g., gene expression data measured by microarrays), and
heterogeneous (several types of data can represent the same biological objects, such as the
sequence and the expression profile of a gene). A recent branch of machine learning, called
kernel methods, lends itself particularly well to the study of these aspects, making it rather
suitable for problems of computational biology. A prominent example of a kernel method is
the support vector machine (SVM) (Boser et al., 1992; Vapnik, 1998), widely used nowadays
for pattern recognition and regression problems. The goal of this introductory section is to
remind the reader the basics about kernel methods, and why they are useful in computational
biology. The following sections will detail in more details my own contributions.

2.2.1 Positive definite kernels and kernel methods

In this section, inspired by (Vert et al., 2004b), we briefly remind the very basics of kernel
methods to introduce the framework where most of my research has focused. More complete
presentations can be found in several reviews or books, including for example (Vapnik, 1998;
Scholkopf and Smola, 2002; Berg et al., 1984; Saitoh, 1988; Cristianini and Shawe-Taylor, 2000;
Shawe-Taylor and Cristianini, 2004). The basic philosophy of SVMs and kernel methods is
that with the use of a certain type of similarity measure (called a kernel), any type of data
can be implicitly embedded in a Hilbert feature space, in which linear methods are used for
learning and estimation problems. More precisely, if we assume that the goal is to analyze
data from a set X, we have the following definition:
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Definition 1 A function K : X X X — R is called a positive definite kernel (denoted p.d.
kernel, or simply kernel below) iff it is symmetric, that is, K(x,x') = K(x',x) for any two
objects x,x' € X, and positive definite, that is,

n n
Z Zcich(xiaxj) >0

i=1 j=1

for any n > 0, any choice of n objects x1,--- ,x, € X, and any choice of real numbers
c1, 0,0 €R.

The main reason for focusing on p.d. kernels is that they are equivalent to embedding the
space X in a Hilbert space, often called the feature space:

Theorem 2 For any kernel K on a space X, there exists a Hilbert space F and a mapping
¢: X — F such that

K(x,x') = (¢(x),p(x)), for anyx,x" € X, (2.1)
where (u,v) represents the dot product in the Hilbert space between any two points u,v € F.

This result shows that it is possible to perform implicitly any operations in the feature space
that only require inner product computation. This apparently trivial observation, usually
referred to as the kernel trick, has huge practical implications when one realizes that most lin-
ear statistical methods fulfill this constraint: large-margin classification and regression (Vap-
nik, 1998), Gaussian processes and Kriging (Williams, 1998), principal component analysis
(Scholkopf et al., 1999), canonical correlation analysis and independent component analysis
(Bach and Jordan, 2002), logistic regression (Zhu and Hastie, 2001) and linear Fisher discrim-
inant (Mika et al., 1999), to name just a few.

A dual realization of the Hilbert structure generated by a kernel, is its reproducing kernel
Hilbert space (RKHS) (Saitoh, 1988), that is, the unique Hilbert space Hx C RY of functions
that satisfy:

{VXEX, K(x,-) € Hk

V(fax)EHKXXa <f,K(X,)>:f(X)

Among other properties, this functional space turns out to be a very convenient space to solve
a wide range of optimization problems due to the famous representer theorem first stated with
less generality by (Kimeldorf and Wahba, 1971) (see proof for example in (Vert et al., 2004b)):

Theorem 3 Let X be a set endowed with a kernel K, and S = {x1,--- ,x,} C X a finite set
of objects. Let ¥ : R*t1 = R be a function of n + 1 arguments, strictly monotonic increasing
in its last argument. Then any solution of the problem

min W (f (x1),--, f (%), | f l9x) (2.2)

feHK

where (Hi, || - |7, ) is the RKHS associated with K, admits a representation of the form

VxEX, f(x)=) oK (x4,%). (2.3)
=1
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Theorem 3 shows the dramatic effect of regularizing a problem by including a dependency in
|| f ll#x in the functional to optimize. First, this norm being penalized in the optimization
process, it forces the solution to have a “small” norm, which typically corresponds to being
“smooth”. Various statistical arguments support this strategy to ensure that the solution
may be used successfully to process new points, e.g., to predict a class in the case of SVMs
(Vapnik, 1998). While other penalization schemes can be imagined, the representer theorem
shows that this penalization also has substantial computational advantages: any solution to
(2.2) is known to belong to a subspace of Hx of dimension at most n, the number of points in
S, even though the optimization is carried out over a possibly infinite-dimensional space Hx.
A practical consequence is that (2.2) can be reformulated as an n-dimensional optimization
problem, by plugging (2.3) into (2.2) and optimizing over (aq,--- ,a,) € R™.

As an example, the kernel-PCA algorithm (Schoélkopf et al., 1999) consists in minimizing
iteratively the following functional:

1 n
f. = argmax —— 5 — f(X')Q.
z fJ‘{fl7afl—1}n||f||%{K Zz_; !

which, by application of the representer theorem and basic linear algebra, boils down to
diagonalizing the matrix K = (I — e/n)K(I — e/n), where I is the identity matrix and e is
the singular matrix with all entries equal to 1 (Vert et al., 2004b).

2.2.2 Kernel methods in computational biology

Kernels methods share several properties that make them potentially suitable for application
in computational biology. First, thanks to the kernel trick, they can be applied to the pro-
cessing of any kind of data as long as p.d. kernels are properly defined on the data to be
processed. Hence, processing biological sequences is potentially neither more nor less diffi-
cult than processing vectors, graphs, or more complex objects. Second, once a p.d. kernel is
defined, the whole machinery of kernel methods can be applied without further effort. This
opens the possibility to develop original approaches to difficult problems, such as classification
or regression on sequences or graphs. Third, they offer a rigorous mathematical framework
to represent biological data by kernel functions. For example, for a given set of genes, the
knowledge of their coding sequence in DNA can be represented directly by a kernel function
(see Figure 2.1) and not by the set of sequences. Hence this is a first step towards a theoretical
framework to represent knowledge about biological systems. Fourth, the set of p.d. kernels
on a given space has a rich mathematical structure: it is a convex and pointed cone, closed
under point-wise convergence and Schur product (Berg et al., 1984). By representing one bio-
logical knowledge (e.g., the data provided by one high-throughput experiment) as one point in
this space, i.e., one p.d. function, various mathematical operations can be performed in this
space, e.g. to integrate heterogeneous data by taking the center of the corresponding kernels
(Pavlidis et al., 2001; Yamanishi et al., 2004a), or by formulating optimization problems in
the space of p.d. kernels and using the strong development of semi-definite programming in
the recent years (Lanckriet et al., 2004). Fifth and not least, kernel methods are considered at
the state-of-the-art level of performance in many real-world applications, which suggests they
may be able to provide powerful algorithms useful for biology. Kernel methods, in particular
SVM, have indeed invaded the field of computational biology during the last five years (see
an a review in (Noble, 2004), and several recent contributions in (Schoélkopf et al., 2004)).
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Figure 2.1: Two different representations of the same dataset. X is supposed to be the set of
all oligonucleotides, and § is a data set of three particular oligonucleotides. The classic way
to represent S is first to define a representation ¢(x) for each element of x € X, for example,
as a sequence of letters to represent the succession of nucleotides, and then to represent S as
the set ¢(S) of representations of its elements (upper part). Kernel methods are based on a
different representation of S, as a matrix of pairwise similarity between its elements (lower
part).

2.3 Kernel design

Kernel methods first attracted my attention in the context of computational biology through
two seminal papers of David Haussler’s group at UCSC. In the first paper, Jaakkola et al.
(2000) proposes a clever approach (the so-called Fisher kernel) to apply the SVM algorithm
to the classification of biological sequences, and showed very promising experimental results
on the problem of detecting remote homology between protein primary segences; in the (un-
published) second paper, Haussler (1999) lays the foundations for the use of kernel methods
for non-vectorial methods, suggesting in particular new ways to build kernels for strings and
trees through an operation of convolution. These papers considerably influenced my research
by suggesting to have look in more details at the possibilies offered by kernel methods for
non-vectorial data.

2.3.1 P-kernels and graphical models

In two publications (Vert, 2002a,b) I proposed and tested an original approach to define a p.d.
kernel on a discrete set endowed with a probability distribution, typically defined as a graphical
model (Lauritzen, 1996). The main motivation behind this work is the fact that graphical
models are widely used in computational biology to model for example fixed-length sequences
with motifs (Gribskov et al., 1990), variable-length sequences with Markov or hidden Markov
models, or multiple alignments with phylogenetic trees, i.e., tree graphical models (Durbin
et al., 1998).

The approach borrows the concept of P-kernel on a discrete set X', defined by Haussler
(1999) as the set of p.d. kernels that satisfy:

V(x,x') € &2, K (x,x') >0,
Z(x,x’)e)(z K (x, xl) =1

In other words, a P-kernel is a p.d. kernel that defines a probability distribution on X2. The
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RKHS defined by a P-kernel is the set of functions f : X — R of the form:

N
= Z AP (x;) P (x[x;)

and their point-wise limits. Two extreme examples of P-kernels are the independent and
diagonal kernels (Haussler, 1999), defined with respect to a prior probability distribution p on
X respectively by:

p(x) ifx=x,
King (x,X') =
ind ( ) {O otherwise,

and
Kprod (xa xl) =D (X) p (xl) :

The corresponding RKHS are the limits of functions of the form:
find (x) = cte X 6 (x,x1),

where ¢ is the Dirac symbol, and:

N
proa (x) = (Z AP (Xz‘)> P (x) = cte x P (x),
1=1

respectively. Hence neither of these kernels is very interesting: the RKHS associated to the
independent kernel is “too large”, and no learning is possible because all points are orthogonal
to each other, while the RKHS associated to the product kernel is “too small”, as it basically
reduces to the distribution p itself.

Haussler (1999) and Watkins (2000) proved independently that a possibly interesting P-
kernel for gene sequences is defined by pair-HMM (Durbin et al., 1998), under some hypothesis
on the parameters of the HMM. In (Vert, 2002a,b) I suggest a different approach to obtain
potentially interesting P-kernels by interpolating between the independent and product ker-
nels, in the case when there is some structure in the data. More precisely I consider the case
where data are n-tuples of discrete variables, that is,

X = (.’L‘l,...,.’Bn) eX=A1 x...xA,.
Then for any subset of indices Z C [1,...,n], the following is a valid P-kernel:
Kz (x,x) = p(x1) § (xz,%7) % p (xz¢|x1) P (X7 [xXT) ,

where x7 = (x; : 7 € Z). In other words, this Z-interpolated kernel applies the independent
kernel to the objects restricted to their components in Z, and a conditional product kernel
to the remaining components. With this kernel, two objects are orthogonal as soon as they
do not perfectly match on the components indexed by Z. Otherwise, the value of the kernel
depends on the conditional probabilities assigned to the other components. Hence this allows
to use the product kernel at a finer granularity than the whole space. Figure 2.2 illustrates
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Figure 2.2: Representation of the feature spaces associated to the independent kernel (a),
the product kernel (b), and the interpolated kernel (c¢). The interpolated kernel applies the
independent kernel on the first letter, and the product kernel on the second kernel. The
dimension of the feature space of the interpolated kernel is between the dimensions of the
feature spaces of the product kernel (1) and independent kernel (N).

the difference between the resulting feature space. If enough prior knowledge is available, then
one might consider choosing a precise set Z for a given application. However such situations
rarely occur, and in case it happens then one might rather split by himself the set of data
according to their values on Z. A more common and less trivial situation is when one’s prior
knowledge allows him to define a set of index subsets V = {Z;,...,Z,}, in the sense that he
believes the values of the data restricted to some of these subsets are important for a given
problem, without knowing precisely which one. As an example, in the case of fixed-length
strings, then one might believe that short-length substrings are important, and consider all
subset of indices made of consecutive indices (Vert, 2002a). In order to define a kernel in such
a case, I proposed the formula:

Ky (x,x') = |71| IE;KI (x,x). (2.4)

The resulting kernel is obviously a P-kernel, related to the product kernel by the following
(Vert, 2002a):
1 0 (xz,x%)
Ky (x,x") = Kprog (x,x') x — =z
() = Ky (%) x - 5 T2
This equation highlights the role played both by V and p in this formulation: the kernel between
two objects increases when they share rare (according to p) common subparts, as defined by
the list of index subsets in V.
In many practical cases the set V is expected to be large, typically to grow exponentially
with the number of variables n. Hence the equation (2.4) is intractable in practice, due to the
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possible large number of terms in the sum. It turns out, however, that several choices of sets
V and probabilities p lead to tractable computations, because the kernel can be factorized in
different ways. As an example, the following choices lead to linear-time implementation of the
kernel with respect to the number of variables n, although |V | increases exponentially with
n:

1. When the variables are independent, i.e.,
n
p(x) = sz'(ivi),
i=1

and
V=P(L,...,n])

is the power set of [1,...,n], that is, the set of all subsets of indices (hence |V | = 2").

2. When p is a first-order Markov chain, namely:

p(x) =p1(z1) Hpi(wi‘l'z’fl)a

i=2
and V is the set of all contiguous subsets of indices, i.e.,

V={[},j]:1<i<j<n}u{l}

3. When p is a tree graphical model, i.e., when a rooted tree with n nodes numbered from
1 to n is defined and p factorizes as:

P (%) = P (Troot) H p (Is|-7"f(s)) )

s node

where f(s) denotes the unique parent node of node s in the tree, and when V is the set
of all rooted subtrees of the original tree, that is, the set of all connected subgraphs that
contain the root node.

4. When p is a tree graphical model, and V is the set of all subtrees of the original tree,
that is, the set of all connected subgraphs of the original tree.

The first two cases are treated in (Vert, 2002a), the third one in (Vert, 2002b), and the
fourth one is only a slight generalization of the third one that can easily be implemented
(unpublished). In (Vert, 2002b) it is also shown that the probabilistic model may contain
hidden variables, and a kernel for the observed variables can still be defined (by summing over
the hidden variables to keep the interpretation of the kernel as a probabilistic distribution)
and computed with the same linear complexity. The factorizations that lead to linear-time
computation of the corresponding kernels are detailed in the mentioned references, and can
intuitively be understood as a combination of two tricks: first, the possibility to compute p (x)
using a message-passing algorithm (Pearl, 1988) when p is defined by a Bayesian network, and
more generally to factorize the computation of one kernel K7 along the branch of the tree,
when Z is a subtree; second, a trick to perform a sum over all subtrees of a functional that
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factorizes along the branches of the trees, used for example in the context tree weighting
compression algorithm (Willems et al., 1995) or in (Vert, 2001a).

Tested on real-world data, these kernels exhibited promising performances on the task of
detecting a signal in biological sequences with a moving window (Vert, 2002a), and on the task
of prediction of functional class of all genes of the yeast genome using only the information
about the presence or absence of homologs in other sequenced genomes (Vert, 2002b). In
the later case the kernel is between a set of observed variables at the leaves of a graphical
tree model that represent an evolutionary tree. Internal nodes are hidden variables. This
application is particularly well motivated because the features of the resulting kernel can be
given relevant biological interpretation as evolutionary patterns, knwon to be characteristic of
biological functions (Figure 2.3).

Figure 2.3: In (Vert, 2002b) a kernel between phylogenetic profiles is proposed. The phyloge-
netic profile of a gene is a string of n bits that indicates the presence or absence of the gene
in n sequenced genomes. It can be used to infer the function of a gene, between genes with
similar profiles are likely to act in common and therefore to have similar function. The kernel
between two profiles x and x’ is built by considering them as observed variables at the leaves
of a tree graphical model, representing the tree of evolution. The features of the kernel are
patterns of evolution, i.e., partial assignment of bits to the hidden variables at the node of a
rooted subtree. Such patterns are expected to be good characteristics of protein function.

Future work: Kernels defined from probabilistic models, in particular graphical models,
are likely to be increasingly useful in the future as graphical models themselves are more and
more present to model complex distributions. I therefore plan to continue the investigation
of the relationships between both approaches, both in theory and in terms of efficient imple-
mentations. More generally, further theory seems to be required to fully understand whether
P-kernels have specific properties in terms of learning capabilities, for example, and what
consequences this may have on learning algorithms.
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2.3.2 Local alignment kernels and remote homology detection

In the last twenty years, nucleotide or amino-acid sequences analysis has by far dominated
the field of computational biology. Databases are full of sequences to compare, classify and
annotate. In order to process sequences in the framework of kernel methods, as advocated
in Section 2.2.2, kernels adapted to such strings must be developed. Potential applications
of such a kernel include supervised classification of sequences into functional or evolutionary
categories by SVM, analysis of protein families by kernel-PCA, or detection of correlation
between the sequence and various properties of the genes with kernel canonical correlation
analysis, for example. Given those possibilities, there has recently been a growing interest
in the development of kernel functions for biological sequences, including the Fisher kernel
(Jaakkola et al., 2000), spectrum kernel (Leslie et al., 2002), mismatch kernel (Leslie et al.,
2003), pairwise kernel (Liao and Noble, 2002), and the string kernel proposed by (Lodhi et al.,
2002). All these kernels but the last one require the explicit representation of sequences by a
finite-dimensional vector.

In collaboration with T. Akutsu, N. Ueda and H. Saigo at Kyoto University, we investigated
in (Saigo et al., 2004; Vert et al., 2004a) an alternative approach, based on the following simple
idea: because a kernel function can often be thought of as a measure of similarity, why not
use as string kernels the measures of similarities traditionally used in computational biology
to assess the similarity between biological sequences? The rational behind this idea is that
measures of similarity such as the Smith-Waterman score (Smith and Waterman, 1981; Durbin
et al., 1998) have been optimized over the years, and are currently accepted as providing a
relatively good notion of biological similarity — typically related to the evolutionary distance
between sequences in case of orthologs. The question, of course, is to know whether or not
such similarity measures are p.d. kernels or not, and under which conditions they can be used
by kernel methods.

In order to clarify the concepts, let us first recall in a nutshell the basic definitions of local
sequence alignment (see (Vert et al., 2004a) for more details). Roughly speaking, an alignment
between two sequences is an arrangement of one sequence on top of the other, some pairs of
letters being aligned on top of each others and gaps being inserted when necessary. As an
example, the following represents one possible alignment between the strings x = GAATCCG
and x’ = GATTGC :

G-AATCCG-
GAT-T-G-C

This example shows 4 aligned pairs: (G,G),(A,T),(T,T) and (C,G), and 3 inserted gaps
of length 1 between the first and the last aligned pair (note that we do not count the gaps
inserted before the first and after the last aligned positions). The biological relevance of
such an alignment is usually assessed by a numeric score, parametrized by a similarity matrix
S : A%2 — R between letters and a gap penalty function f : N — R, by summing the similarities
between aligned letters and removing penalties corresponding to the length of each gap inserted
in one sequence or the other, between the first and the last aligned positions. As an example
the score of the previous alignment 7w would be:

s (x,x',m) = S(G,G) + S(A,T) + S(T,T) + S(C,G) — 3f(1).

The name “local alignment” stems from the fact that no penalty for gaps is counted before
the first and after the last aligned positions. Finally, the local alignment score — or Smith-
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Waterman score — between two sequences is defined as the largest possible score among local
alignments, namely:
SW (x,x') = max $ (x, x', 7r) (2.5)
™

This similarity score can be computed by dynamic programming with a complexity O (| x| - | x'|),
and is widely used in computational biology, either directly or through faster heuristics such
as BLAST (Altschul et al., 1997) of FASTA (Pearson, 1990) to query databases.

The question of whether or not it defines a p.d. kernel for sequences was investigated in
(Vert et al., 2004a), where it is shown that it can be a p.d. kernel for particular choices of
S and f, but that it is generally not p.d. with classical parameter settings used in practice.
However, we proved that the following slightly different version of the alignment score is a
p.d. kernel:

Theorem 4 If S is symmetric and conditionally positive definite' then the following equation
defines a valid p.d. kernel, called the local alignment kernel (or LA kernel) for any § > 0:

K}fg = Zexp {ﬁs (X,X’,T{')} .

The complete proof of this result, which can be found in (Vert et al., 2004a), relies on the
expression of K as a sum of convolutions kernels (Haussler, 1999). This results shows that
a valid p.d. kernel is obtained when the contributions of all possible alignments are summed
up after exponentiation, while the Smith-Waterman (2.5) score only keeps the contribution of
the highest-scoring alignment. Both are related by the following equality:

V(x,x') € X2, ﬂEI-Eoo% ané@(x, x') = SW(x,x'). (2.6)

Just like the Smith-Waterman score, the LA kernel between two strings can be computed
with a complexity O (|x|-|x"|) (Saigo et al., 2004; Vert et al., 2004a). It basically boils
down to translating the Smith-Waterman dynamic programming algorithm from the (min, +)
tropical semiring to the (Djog, +) log semiring? (Kuich and Salomaa, 1986).

In spite of this theoretical results the LA kernels turns out to be a bad choice of kernel in
practice. The reason is that, like several other string kernels, its values vary on an exponential
scale. More precisely, they roughly increase exponentially with the length of meaningful
alignments, and decreases exponentially with the number of mismatches or gaps between two
sequences. The RKHS associated with such kernels is very “large”, in the sense that most pairs
of points are almost orthogonal; learning from examples in such spaces is difficult because it
requires a lot of examples, to “cover” the whole space (Scholkopf et al., 2002). In order to
overcome this difficulty, we proposed to take the logarithm of the LA kernel as a candidate
string kernel:

B8 (x,x') = %ngfg (%,%). (2.7)
An obvious caveat with this operation is that the logarithm of a positive definite kernel is
not a positive definite kernel in general (Berg et al., 1984). In concrete application, a post-
processing might therefore be required to ensure that the pairwise kernel matrix computed on

! A symmetric function f : X% — R is conditionally positive definite if and only if D= @ias f (%i,%5) >0
for any n € N, any x1,Xs,...,%xn, € X", and any a1, as,...,a, € R" such that 3, a; = 0.

*Where, = @10z y = loge® + e¥
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Figure 2.4: Comparison of different methods for a benchmark experiment of remote homology
detection (from (Saigo et al., 2004)). Each curve corresponds to a different method, including
SVM with a Fisher kernel (Jaakkola et al., 2000), SVM-pairwise (Liao and Noble, 2002), and
SVM with a mismatch kernel (Leslie et al., 2003), and the proposed LA kernel with 3 set
to 0.5 and +o00. The curve shows how many protein domain families, from a selection of 53
families in this benchmark, can be assigned to their correct superfamily with a given measure
of performance measured by the ROC5g index. In short, the higher the curve the better. The
proposed methods perform surprisingly well on this benchmark. See (Saigo et al., 2004; Vert
et al., 2004a) for more details.

a set of examples be positive definite; this might be done by removing the smallest negative
eigenvalue from the diagonal of the matrix, for example.

The method, tested on a benchmark experiment that stimulates the problem of detecting
remote homology between protein sequences (Jaakkola et al., 2000), compares surprisingly
well with other state-of-the-art SVM-based classifiers (see Figure 2.4) and validates the initial
motivation that a careful choice of kernel based on domain-specific knowledge, in our case the
use of classical measures of similarities used in the field, can lead to performance improvement
for SVM-based classification tasks. Obviously, the state-of-the-art level increases very rapidly
and new methods are expected to outperform the results shown in the coming months or so. An
important limitation of the proposed kernel is the quadratic cost of dynamic programming,
which is likely to be too slow for large-scale real-world applications involving hundreds of
thousands of sequences. In the precision/speed balance, local alignment kernels are definitely
geared toward higher precision at the expense of speed.

Future work: This work suggests different research opportunities. First the good results
obtained on remote homology detection show that the resulting algorithm reaches a state-of-
the-art performance, suggesting the investigation of new applications for this algorithm for
biological sequence classification. Second, more work needs to be done regarding the choice
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of parameters. The fact the similarity score obtained, as opposed to the Smith-Waterman
score, is differentiable with respect to the parameters suggests various parameter optimization
procedures for any given application. Finally the experiments confirm that the condition of
positive definiteness, although required in theory, are not necessary to obtain good results. A
theoretical framework to justify this has to be built.

2.3.3 Mutual information kernels and string compression

With M. Cuturi, who started his PhD at the Ecole des Mines in November, 2002, we started
investigating a different direction to kernel design for strings. Our initial motivation was to
develop fast kernels, i.e., with a linear complexity with respect to the total length of the
sequences involved, and to investigate possible connections between string kernels and source
coding used for text compression. Roughly speaking, if a compression algorithm can compress
a sequence x in [ (x) bits, we wanted to study under which conditions the length of the code
of the concatenation of two strings [ (xx') can be used as (the opposite of) a p.d. kernel for
strings.

The rational behind this approach is that many compression algorithms are efficient for
sequences with repeated patterns or homogeneities. In other words, if x’ is “similar” to x
according to some algorithm-specific criterion, then both sequences are better compressed
taken together — e.g., concatenated — than taken apart : [ (xx') <1 (x) 41 (x'). Hence, if an
algorithm is known to be efficient to compress particular strings (e.g., biological sequences,
natural language texts, financial time series...), then it might make sense to assess the similarity
between two strings by the length of the code of the two strings compressed together, because
this would mean that the algorithm has detected common features between the two strings
that are known to be relevant in the field concerned.

Most compression algorithms, however, do not easily lead to p.d. kernels. We focused on a
particular class of algorithm that first define a coding probability P, on the set of strings, and
then use arithmetic coding to form a code that compresses any sequence x into approximately
log P, (x) bits (Cover and Thomas, 1990). Among this class of algorithms, a particular subclass
defines the coding probability as a mixture probability:

P, (x) = / Py (x) w (d6),

where {Py: 6 € O} is a prior family of probability distributions and w is a prior probability
on the measurable set ©. Such algorithms include for example the Laplace or Krichesky-
Trofimov coding probabilities (Krichevsky and Trofimov, 1981), as well as the more complex
context-tree weighting (CTW) algorithms (Willems et al., 1995).

For such algorithms, one can easily define a p.d. kernel by the formula:

K. (x,x) = / Py (x) Py (x') w (d6). (2.8)
This obviously defines a p.d. kernel, as soon the function fx : © — R defined by:
VO €O, [x(0)="Py(x)

belongs to Lo (©,w()df). It corresponds to the inner product in this space, and the features
representing a sequence x are therefore exactly (Py(x),0 € ©). This provides an intuitive
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interpretation of how the kernel behaves : the kernel between two strings is large when both
strings have simultaneously large probabilities under models with large a priori probabilities. We
note that independently (Seeger, 2002) introduced the similar concept of covariance kernels.
Hence potentially interesting kernels can be formed if 1) domain-specific relevant models Py
are used, and 2) the mixture probability (2.8) can be efficiently implemented.

In (Cuturi and Vert, 2004) we present a particular case of such a kernel that solves both
issues simultaneously. Based on previous evidences that variable-length Markov models for
strings are relevant models for protein superfamilies (Bejerano and Yona, 1999; Eskin et al.,
2000; Bejerano and Yona, 2001) and that mixture of Dirichlet distributions with domain-
specific optimized parameters are relevant prior probabilities amino-acid distributions (Brown
et al., 1993), we define a kernel for strings that involves a 3-stage mixture over suffix tree
models, Dirichlet priors and multinomial parameters. More precisely, we first define a set of
variable-length Markov probability distributions Pp gg over strings, where D is a complete
suffix tree that defines the set of suffixes to use in the variable-length Markov model, 3 is a
discrete variable that specifies the index of the Dirichlet component attached to each leaf of
the suffix tree — i.e., an integer between 1 and m is specified on each leaf, where m is the
number of components in the Dirichlet mixture considered —, and @ is a set of multinomial
parameters, one for each leaf of the suffix tree, that defines the conditional distribution of the
next letter given a particular suffix. We then define a prior probability 7 over the parameters
that factorizes as:

™ (D, B,0) = = (D) w (B|D) = (6]5)

where 7 (D) is a prior probability on suffix trees, typically the distribution of a Galton-Watson
branching process; 7 (5|D) is the distribution of the Dirichlet mixture used at each leaf of
the tree D, and typically decomposes as a product of independent multinomials on each
leaf; 7 (6|8) is a conditional distribution that typically decomposes as a product of Dirichlet
distributions with parameters 8. The resulting kernel is obtained by a 3-stage mixture over
suffix trees, Dirichlet mixture components and multinomial parameters as follows

K. (%) = Sn (D) Cw(610) | [ oo ) Posa () w at15)

D B

In spite of the apparently complex mixture to perform, this kernel can be computed exactly
with a linear complexity with respect to the length of the sequences. This results from the
extension of the CTW algorithm (Willems et al., 1995), that performs a double mixture
over trees and multinomial parameters in linear time, to also include a step that performs
the average over Dirichlet mixture components, thus resulting in a linear-time triple-mixture
algorithm. As a by-product, this algorithm can also be used as an extension of the CTW
algorithm for compression purpose.

When tested on a benchmark experiment on remote protein homology detection, the per-
formance of this kernel was a bit disappointing — typically of the order the mismatch kernel
(Leslie et al., 2003), that is faster to run (both kernels are linear with respect to the total se-
quence length, but the CTW kernel requires more operations). Some reasons for the difficulty
to outperform the mismatch kernel are discussed in (Cuturi and Vert, 2004).

Future work: the main contribution of this research, to our opinion, is to open new
connections between machine learning and information theory, with important practical im-
plications. This suggests that other compression algorithms may be used as kernel, and that
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more theoretical results on kernel representation may be obtained from information theory.
For example, information theory is likely to offer useful concepts to study the problem of
diagonal dominance for string kernels, highlighting the trade-off between having a kernel that
can “sufficiently” discriminate any pair of sequence, and having a kernel with large enough
values.

2.3.4 Semigroup kernels for finite sets

Following our investigations on the link between compression algorithms and string kernels,
we extended the approach to a more abstract and general setting that goes beyond string
kernels. This research was mainly performed by M. Cuturi, under my supervision. The
initial motivation was that the CTW kernel operates on a “bag-of-words”® representation of
sequences, because the probability of a sequence under a Markov model of order less than
d — 1 is only based on the counts of d-grams. The operation of concatenation of sequences in
fact corresponds to the union of bag-of-words, and the CTW kernel has therefore the following
property:
Kerw (x,x') = f (B (x) UB (X)),

where B (x) represents the bag-of-word representation of x, and U represents the union with
repetition.

This suggests to consider the more general setting where x is a finite set of points of a set
U, with possible repetitions. Equivalently x can be defined as a finite sum of Dirac measures:

n
X = E aiauia
i=1

where u1,u2,...,uy, € U". In particular, in this representation, x is a finite Radon measure
on the set U, and the operation of “bag-of-word unions with repetition” of two objects simply
boils down to the addition of measures. As a second extension to this framework, we therefore
investigated the following problems: if U is a Hausdorff space, and & = M(_’i_ (U) is the set of
finite Radon measures on U (Berg et al., 1984), under which condition on f : X — R is the
following a valid p.d. kernel:

Ky (x,x’) =f (x—i—x').

Stated like this, the general theory of harmonic analysis on semigroups can be applied to
the semigroup (X,+) endowed with the identity involution (Berg et al., 1984) to prove the
following answer to this question, at least for continuous functions f (Cuturi and Vert, 2005)

Theorem 5 Let f be a continuous function on Mi (U) endowed with the weak topology. Then
the function K : X? = R defined by:

Ky () = f (x4 )

is a p.d. kernel if and only if f has an integral representation of the form:

X) = x[h] gy
roo= |, eMant

30r more precisely a “bag-of-n-grams” representation, that is, the unordered list of all n-grams of the
sequence (with their number of occurrence)
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where v s a uniquely determined positive radon measure on C (]Ru), the space of continuous
functions of R, endowed with the topology of pointwise convergence.

For different choices of v, this theorem results in various p.d. kernel between finite Radon
measures, that generalize in particular the CTW kernel. As an example, we present in (Cuturi
and Vert, 2005) (and in a forthcoming publication) three particular semigroup kernels for finite
Radon measures, or simply sets of points.

1. Let us consider the set of probability measures on a set U, absolutely continuous with
respect to a reference measure. In this context, let us consider X to be the set of densities

h(x) = —/uxlnx.

with finite entropy:

Then the following holds:

Theorem 6 The function

K (x,x') = —h (’”;"')

1s conditionally positive definite, making the function
—Bh (==
Kent (X,X,) =e ﬂh( 2 )

a p.d. kernel for any B > 0, called the entropy kernel.

The entropy kernel has the following intuitive meaning: if two distribution are similar
to each other, then their average will be less scattered and thus have a lower entropy
than if they are very different and do not put large probabilities on the same points.

2. Let U = R%, X be the set of finite sets of points of R?, (jx, Ex) be the parameters (mean
and covariance matrix) of the maximum likelihood Gaussian distribution that fits the
points of x.

Theorem 7 For any two sets of points x and X', the function:

1

KX = 5

is a p.d. kernel.

Once again the intuition is very clear: given two clouds of points, they are considered
“similar” if, when taken together, one can adjust on them a Gaussian distribution as
small as possible, as measured by the determinant of the covariance matrix. We note
that the choice of Gaussian distribution can be generalized to any exponential model,
and that the final kernel involves in general the entropy of the maximum likelihood
estimate from the model.

3. The previous case can be considerably generalized using the kernel trick on the space U
itself
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Theorem 8 Let us suppose that U is a measurable set endowed with a p.d. kernel K,.
For any set of points x, let Kx be the kernel Gram matriz, that is, the square matriz of
pairwise kernel evaluation. Then the function:

1

A
K(X,X) - ‘KX+XI+AI|

s a p.d. kernel, for any A > 0.

We can observe that this kernel formulation depends on the eigenvalues of the kernel
matrix, which highlights a strong link with between this kernel and the kernel-PCA
decomposition (Scholkopf et al., 1999). The interpretation of this kernel is summarized
on Figure 2.5

Future work: This work has shown how an algebric structure can translate into a kernel.
Similar approaches may be investigated in other applications where invariant and algebric
structures are present, such as the comparison of 3-dimensional structures of molecules.

2.3.5 Graph kernels for chemo-informatics

In parallel to the recent explosion in the amount of data about genes and proteins, an increas-
ing attention is paid to data about smaller organic molecules and their interactions with DNA
and proteins. As an example, the traditional field of glycobiology is giving rise to the fast-
developing field of glyco-bioinformatics, focusing of the understanding of different properties
of sugars with long chains (Cooper et al., 2001). More classically, drug discovery in phar-
maceutical companies involves increasingly the use of large databases of chemical compounds
(typically of the order of 1 millions), and high-throughput screening technologies can now gen-
erate vast amounts of data about different properties of these molecules. Moreover, integrated
analysis of genomic and chemical information is expected to be a further step towards better
understanding of life at the molecular level in the coming years.

Through a collaboration with T. Akutsu, J.-L. Perret and N. Ueda at Kyoto University,
we began with P. Mahé, who was starting his PhD under my supervision, to investigate the
possibility to use kernel methods for small molecules, i.e., molecules with up to a few tens of
atoms. Focusing on the planar (2D) description of molecules, the problem was then to develop
kernels for labeled graph, vertices being atoms and edges being covalent bonds. Kashima et al.
(2003, 2004) had just proposed such a kernel, called “marginalized graph kernel” because it
belongs to the class of kernels obtained through marginalization of a variable (Tsuda et al.,
2002). This kernel is defined as follows. To each graph x is first associated a probability
distribution px on the set S of finite-length sequences s = viey...e, 1v, that alternate a
vertex label with a bond label. In the case of molecules, such a sequence might for example
be “C = C - C - 0 - N”. This probability distribution is the image of a first-order Markov
random walk on the graph, killed after each step with some probability, by the operation of
taking the sequence of labels of each walk on the graph. In other words, the probability of
a sequence of labels s is the probability that the random walk follows a path with exactly
this sequence of labels. The kernel between two graphs x and x’ is then defined as a kernel
between the corresponding distribution px and py::

K (x, x') = pr (s) pxr (3) .

SES
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(b) Data sampled from a ’1

(c) Data superposed

Figure 2.5: In order to compare two sets of points, such as pixels on two images, the sets of
points are superimposed and the eigenvalues of kernel-PCA are computed. The grey levels in
these pictures represent the level sets of the first kernel principal components. If both sets
of points superimpose well, then the eigenvalues will tend to be smaller than if they do not.
This property can be used to define a semigroup kernel on the sets of points (from (Cuturi
and Vert, 2005))
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This kernel is parametrized by the parameters of the random walk: distribution of the initial
vertex (typically uniform over vertices), transition probabilities between each node and its
neighbors (typically uniform among the neighbors), and death probability (typically constant
at each step). An interesting property of this kernel is that it can be computed in polynomial
time with respect to the product of the numbers of atoms in each graph to be compared*.

In (Mahé et al., 2004) we propose two extensions to this graph kernel. First the alphabet
of the vertices labels is extended, typically to augment the original vertex label — such as the
type of an atom — with contextual informations — such as the degree of covalence, or the type
of neighborhood atoms. Although various choices of label enrichment are possible, we test the
use of an index known in chemoinformatics as the Morgan index, that roughly characterizes
the number of atoms in a given range of each atom. Label enrichment has two important
consequences. First, as the label specificity increases, the number of common paths between
two graphs automatically decreases. This not only mean that the graphs becomes increasingly
orthogonal, but also that the kernel becomes increasingly fast to compute — the complexity
of the kernel computation depends on the number of matches between the vertices of both
graphs. Second, as the environment of each atom is taken into account to build the labels,
the feature space of the kernel increases and more relevant features for a given classification
problem than only sequences of atoms are likely to appear. There is obviously a trade-off to be
found between the computation time and a variety of features encoded in the kernel, that favor
large label alphabets, and statistical learning, that favors small alphabets which result in large
amount of features shared between different molecules. Tested on a benchmark experiment
of binary molecule classification (mutagenicity or not), we indeed found an optimal alphabet
size that results in a small performance improvement, while the computation time is reduced
by two orders of magnitude.

The second extension aims at removing paths that “totter” from the random walk model,
i.e., paths that go from a node A to a node B, and then to A again. We hypothesized
that such path might generate misleading features for the graph kernel. For example, the
feature “C - C - C” might correspond to the presence of 3 carbon atoms in a row, or simply
to 2 carbon atoms. By preventing tottering paths in the random walk model, we therefore
expected to “improve” the chemical relevance of the features. A possibility to prevent totters is
to modify the random walk model, and make it second-order Markov. In order to implement
it we showed that the probability distribution of the paths label sequences under such a
second-order Markov model can be obtained from a first-order Markov model on a bigger
graph (see Figure 2.6), just like, for discrete time-series, a d-th-order Markov model reduces
to a first-order Markov model on an augmented variable. This modification, of course, has
the drawback to increase the computation time of the kernel. Tested on two benchmark
experiments of molecule classification, this expensive extension to the original graph kernel
led to no significant performance improvement, for a longer computation time.

Future work: We are currently validating the method on larger chemical datasets, for
various problems of drug-likeness and activity prediction, which are among the dominant
applications in chemical dataset analysis for drug discovery. From this validation phase, new
developments will be planed. In particular, parameter optimization and feature selection
might be relevant in this case.

“More precisely it involves the inversion of a sparse | x| X | x| matrix.
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Figure 2.6: A graph transformation that transforms non-tottering second-order Markov ran-
dom walks into first-order Markov random walk, enabling the fast computation of the modified
kernel (from (Mahé et al., 2004)).

2.4 Kernels in systems biology

The term “systems biology” refers here to the fast-growing discipline that consists in studying
biology at the level of systems of basic entities that interact together. Roughly speaking,
this encompasses the reconstruction of biological network — such as regulatory, interaction or
metabolic networks —, the analysis of their properties, the study of their evolution, and the
prediction of their responses to external action. In the kernel approach, a set of points, e.g.,
a set of genes, is represented by a set of points in a Hilbert space. This defines an elementary
system, where “interactions” between points basically refers to their relative positions in the
Hilbert space, and where the naivety of the approach is partly compensated by the power of
kernel methods to provide useful methods. We mention below two contributions we did in
this field.

2.4.1 Supervised graph inference

The problem of graph inference, or graph reconstruction, is to predict the presence or absence
of edges between a set of points known to form the vertices of a graph, the prediction being
based on observations about the points. This problem has recently drawn a lot of attention
in computational biology, where the reconstruction of various biological networks, such as
gene or molecular networks from genomic data, is a core prerequisite to the recent field of
systems biology that aims at investigating the structures and properties of such networks. As
an example, the in silico reconstruction of protein interaction networks (Jansen et al., 2003),
gene regulatory networks (Friedman et al., 2000) or metabolic networks (Kanehisa, 2001) from
large-scale data generated by high-throughput technologies, including genome sequencing or
microarrays, is one of the main challenges of current systems biology.

Various approaches have been proposed to solve the network inference problem. Bayesian
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(Friedman et al., 2000) or Petri networks (Doi et al., 2000) are popular frameworks to model
the gene regulatory or the metabolic network, and include methods to infer the network from
data such as gene expression of metabolite concentrations (Friedman et al., 2000). In other
cases, such as inferring protein interactions from gene sequences or gene expression, these
models are less relevant and more direct approaches involving the prediction of edges between
“similar” nodes have been tested (Marcotte et al., 1999; Pazos and Valencia, 2001).

In collaboration with Y. Yamanishi, currently PhD student at Kyoto University, we inves-
tigated a radically different approach for the problem of graph inference, and proposed two
related algorithms based on kernel methods that gave very promising results on the problem
of reconstructing the metabolic network of a simple organism (Yamanishi et al., 2004b; Vert
and Yamanishi, 2005). Our key contributions are 1) the observation that most problems of
network inference in computational biology can in fact be considered as supervised learning
problem, and 2) a general methodology to solve the problem of supervised network inference,
resulting in two algorithms.

The first point is based on the observation that many problems of interest in systems
biology concern the completion of a network that is partially known. For example, a significant
number of classical metabolic pathways can be reconstructed, together with the enzymes,
on most newly sequenced organisms, and a challenging problem is to find new pathways
or enzymes (i.e., genes) missing is the known pathways. Similarly, while limited parts of
gene regulatory networks and protein interaction networks are known with high evidence from
experimental validation, the challenge is to extend this limited networks to a the whole-genome
or proteome scale.

This observation suggests to formalize this problem as a supervised learning problem: given
a limited network of genes, together with data about each gene, how to extend this network
to new genes, for which only data are available? In order to solve such problems, we propose
a general two-step strategy:

1. first map the data points (graph vertices) to a Euclidean space with a mapping ® : X —
R4

2. then connect any pair of points (x,x') € X? with an edge whenever the Euclidean
distance || ® (x) — ® (x') || is smaller than a given or estimated threshold é.

Within this strategy we proposed to restrict the supervised learning problem to the se-
lection of the mapping ® in the first step. This amounts to solving the following problem:
given a set of points in X together with edges between the points, how to find a mapping
from X to a Euclidean (or Hilbert) space such that the edges link points close to each other
in this space? Following a classical approach in statistics and machine learning, we define
an empirical loss function R, (®) that quantifies how well a candidate mapping @ fulfills this
goal, and a regularizer 2 (¢) that measures the complexity of the mapping ®; the mapping
learned from the known network is then the solution of:

min {Ry, (@) + A2 (4)},

where ) is the parameter that controls the trade-off between fitting the known network and
finding a low complexity mapping, expected to allow the reconstruction of edges with new
vertices. As an example, we take in (Vert and Yamanishi, 2005) each dimension of ® to be an
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Figure 2.7: Performance of the network inference algorithm with different genomic kernels.
Each curve plots the performance of one particular kernel, obtained from gene expression
data (Kexp), protein localization (Kloc), gene phylogenetic profiles (Kphy), data integration
(Kint), and random kernel (Krand). The performance is measured by the number of correctly
predicted edges as a function of wrongly predicted edges, for different thresholds in the algo-
rithm. We observe that the data integration through kernels improves the performance over
each data taken separately. From (Vert and Yamanishi, 2005).

element of the RKHS associated with a kernel on X, the regularizer to be the square norm in
the RKHS, and the loss function to be quadratic:

Ro (®) =Y [ (i) — @ (x;)]”.

i~

The optimization is performed iteratively for each dimension of @, under the additional con-
straints that each dimension be orthogonal to all previous dimensions and have unit norm in
the RKHS. Other choices for R, () and Q (®) are obviously possible, and we are currently
investigating several alternative both in theory and in practice.

Thus stated this method can be applied on any space X endowed with a p.d. kernel.
Given the increasing number of such kernels for genes, this provides a principled approach
to network learning from several heterogeneous data simultaneously, by first integrating the
different kernels through operations in the space of p.d. kernels (such as addition, for example),
and then applying the supervised network inference with the resulting kernel. We tested in
(Vert and Yamanishi, 2005) the possibility to infer a particular network, the metabolic gene
network, from various genomic data including gene expression data, phylogenetic profiles,
protein localization in the cell and predicted protein-protein interactions from large-scale high-
throughput experiments. We observed that the supervised approach clearly outperforms the
unsupervised approach, and that the prediction using the integration of all data outperforms
the prediction using each data independently (see Figure 2.7).

Future work. I plan to investigate this topic further in the future for two reasons: first
because it deals with a major problem in current systems biology — how to infer a network from
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noisy and heterogeneous data —, and second because the approach we proposed are clearly in
their infancy. No theoretical work has been done about the statistical issue of estimating a
network. The choice of loss function and regularizer we did was largely arbitrary, and should
be compared both in theory and in practice with other choices, that would lead to different
optimization problems. The validation on real-world data including prediction of protein-
protein interaction, metabolic and regulatory pathways, will be a priority in the near future.
Finally, many connections exist between the formulation we proposed and other problems in
machine learning, including distance learning and data-driven regularization (Sindhwani et al.,
2004), for which a unifying point of view remains to be clarified.

2.4.2 Graph-driven feature extraction

A by-product of the supervised network inference method summarized in the previous section
is the mapping ® that maps the original data to a Euclidean space where the structure of
the graph (presence of absence of edges) roughly corresponds to similarity between points in
terms of Euclidean distance. ® can therefore be seen as a regularized embedding of the training
graph into a Euclidean space. This embedding can be given a particular interpretation in the
case of gene network, that we explored in (Vert and Kanehisa, 2003b,a) and summarize now.

Consider the simple case when genes are characterized by expression profiles, i.e., to each
gene is associated a series of numbers that corresponds to its level of expression in different
experimental conditions. In this case, we take X = R?% where d is the number of experimental
conditions. Let now (V, E) be a known graph of genes, such as a physical interaction network or
the metabolic gene network, and consider the linear p.d. kernel on X : K (x,x') = x-x’. Each
element of the RKHS is then a linear function, of the form fw (x) = w-x. By construction of
the linear embedding @ of the graph (V, E) into a Euclidean space, connected vertices should
be close to each others in the Euclidean space. Another way to express this is to say that each
coordinate of @, as a function from X to R, should vary smoothly on the graph: connected
vertices should have similar values.

In other words, this linear embedding is an automatic way to extract vectors wi,wao,...,
such that the functions f; (x) = w; - x vary as smoothly as possible on the network, while
remaining of low complexity. With the linear kernel, the low complexity simply means that f;
should capture enough of the variation in the data, the first principal component being there-
fore the function with smallest complexity. These smoothly varying features are of particular
importance to interpret experimental measurements, such as gene expression data, in terms
of prior knowledge such as metabolic networks. Indeed the extracted profiles w; correspond
to particular weightings of the different experiment, such that the corresponding features f;
exhibit a particular coherence with the network. Here the coherence is expressed in terms of
smoothness, which typically means that the feature is likely to have clusters of rather positive
or negative values on the graph. These clusters can in turn be interpreted as a set of genes
working together, either because they are involved in the same metabolic pathway (when the
graph is the metabolic network), or because they form complexes (when the graph is a pairwise
interaction graph). One might therefore associate functions to these features.

Examples on real-world data were proposed in (Vert and Kanehisa, 2003a), using a slightly
different method. In order to interpret gene expression data, we applied the method described
earlier and observed the features extracted (Figure 2.8), together with the clusters in the
network where the features are particularly positive or negative (Table 2.1).

In this particular example, a strong experimental bias, never reported before to our knowl-

38



Mean expression, top 50 genes for feature 1
0.35

]
[
W
ol |

line

Expression

-0.05

-0.1

0 2 4 6 8 10 12 14 16 18
Time

(a) First profile

Mean expression, top 50 genes for feature 2
0.15

line

0.1
0.05
Lo
-0.05 \
-0.1 \
-0.15 \

-0.2

Expression

0 2 4 6 8 10 12 14 16 18
Time

(b) Second profile

Figure 2.8: First 2 profiles extracted (« factor data set, from (Vert and Kanehisa, 2003a))
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Feature

Correlation

Main pathways and genes

1

+

Glycolysis / Gluconeogenesis (PGK1, GPM2, ALDA46),
TCA cycle (CIT2, MDH1,2, SDH1, LSC1), Pentose phos-
phate pathway (RBK1, SOL4, ZWF1, YGR043C), Glyc-
erolipid metabolism (GPD1,2,3, ALD4,6), Glyoxylate and
dicarboxylate metabolism (MDH1,2, CIT2, ICL2), Sulfur
metabolism (MET2,14,16,17).

Pyrimidine metabolism (RPA12,34,49,190, RPB2,5, RPC53,
DUT1, TRR1, POL5, URK1, MIP1, PUS1), Purine
metabolism (RPA12,34,49,190, RPB2,5, RPC53, CDC19,
APT2, POL5, MIP1), Aminoacyl-tRNA biosynthesis (ILS1,
FRS2, MES1, YHR020W, GLN4, ALA1, CDC60), Starch
and sucrose metabolism (MPS1, HPR5, SWE1, HSLI,
EXG1).

Pyrimidine metabolism (DEG1, PUS1,3,4, URA1,2,
CPA1,2,FCY1), Folate biosynthesis (ENAL,5, BRR2,
HPR5, FOL1), Starch and sucrose metabolism (ENA1,5,
BRR2, HPR5, PGU1), Phenylalanine, tyrosine and trypto-
phan biosynthesis (TRP2,3,4, ARO2,7), Sterol biosynthesis
(ERG7,12, HGML,2).

Starch and sucrose metabolism (CDC7, ENA1, GIN4,
HXK2, HPR5, SWE1, UGP1, HSL1, FKS1, MEK1), Purine
and pyrimidine metabolism (POL12, ADK2, DUT1, RNR2,
HYS2, YNKI1, CDC21), Fructose and mannose metabolism
(MNN1, PMI40, SEC53, HXK2), Cell cycle (CDC7, GIN4,
SWE1, HSL1).

Table 2.1: Pathways and genes with highest and lowest scores on the first 2 features extracted.
The first profile corresponds to an experimental bias: energy-producing pathways are strongly
activated following the beginning of the experiment, which most pathways involved in the
synthesis of macromolecules are momentarily inhibited. The second profile corresponds to the

cell cycle, which was the motivation for this studies (from (Vert and Kanehisa, 2003a)).
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edge, was easily detected in widely-used yeast cell cycle data (Spellman et al., 1998): the goal
of the experiment being to study genes with a cyclic regulation in the cell cycle, a colony of
yeast had to be synchronized at a given point of the cell cycle, and this synchronization plays
a major role in the gene expression data easily described in terms of metabolic pathways.

Future work: this original approach gave promising results on widely-used public data,
and partially answers a major question in today’s biomedical research: how to make sense out
of gene expression data, particularly in terms of metabolic pathways? We are currently testing
this method on two more challenging real-world issues: the first one, through a collaboration
with P. David and J.Y. Coppée’s group at the Pasteur Institute, concerns the analysis of
the metabolism of Plasmodium falciparum, the agent responsible for malaria, and how it
reacts to various drugs; the second one, through a collaboration with E. Barillot and F.
Radvanyi’s groups, at the Curie Institute, to characterize progresses in tumor progression in
cancer research.

2.5 Conclusion and perspective

My research in the last three years has focused on the use of p.d. kernels to represent hetero-
geneous data in computational biology, and perform various inference tasks, including gene
supervised classification and gene network inference. Several new ideas and methods were
introduced, which have certainly not been fully exploited neither in theory nor practice, and
which constitute future work both for me and for my collaborators, including the PhD students
I have the honors tu supervise.

My first focus will therefore be, both in theory and in practise, to continue the development
of the approaches we pioneered for different applications. Several collaborations have been
set up in the last two years, in particular to secure possibilities of real-world application and
experimental validation of diverse predictions:

e with the Pasteur Institute (in particular P. David, and J.-Y. Coppée’s group) to perform
functional analysis and metabolic pathway monitoring from gene expression data on P.
falciparum, the agent of malaria. The ultimate goal of this research is to develop new
drugs against malaria;

e with the Curie Institute (in particular F. Radvanyi and E. Barillot’s group), to charac-
terize cancer tumors by integrating gene expression data, CGH data and gene regulatory
networks;

e with the biotechnological and pharmaceutical industry to validate the new methods on
virtual screening of chemical compounds in drug design;

e with Kyoto University (in particular T. Akutsu and M. Kanehisa’s groups) to propose
new methods for the analysis of metabolic pathways stored in the KEGG database.

e with University of Washington (B. Noble and D. Baker), UC Berkeley (M. Jordan and
L. El Ghaoui) and UC Davis (N. Cristianini), in order to develop and validate on yeast
genes various kernel-based gene function and protein interaction prediction methods.

A second research direction to be followed in parallel concerns further developments in
the problem of learning from data, both in theory and in practice. Our recent work on semi-
supervised learning (Hue, 2004) and active learning (Abernethy et al., 2004) convinced me of
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the practical performance and theoretical lack of understandings of these fields, which I would
like to be able to devote time on.

Finally, my long-term objective remains to develop rigorous theoretical frameworks and
useful algorithms for post-genomic biology. I expect this goal to be broad and ambitious
enough to motivate my and other’s research in the long term.
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