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Abstract. A new way of representing texts written in natural language
is introduced, as a conditional probability distribution at the letter level
learned with a variable length Markov model called adaptive context tree
model. Text categorization experiments demonstrates the ability of this
representation to catch information about the semantic content of the
text.

1 Introduction

Managing the information contained in increasingly large textual databases, in-
cluding corporate databases, digital libraries or the World Wide Web, is now a
challenge with huge economic stakes. The starting point of any information or-
ganization and management system is a way to transform texts, i.e. long strings
of ASCII symbols, into objects adapted to further processing or operations for
any particular task. Consider for example the problem of text categorization,
that is the automatic assignment of natural language texts to predefined classes
or categories. This problem received much attention recently and many algo-
rithms have been proposed and evaluated, including but not limited to Bayesian
classifiers ([1], [2], [3]), k-nearest neighbors ([4]), rule learning algorithms ([5],
[6]), maximum entropy models ([7]), boosting ([8]) or support vector machines
([9], [10], [11]). All these algorithms share in common the way the initial text
is processed from a long ASCII string into a series of words or word stems, and
most of them carry out the classification from variants of the so-called wvector
space model ([12]) which consists in representing the initial text as a vector of
frequencies of words in a given dictionary.

In spite of the impressive results obtained by some of the above algorithms on
particular databases and categorization tasks it seems that these performances
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degrade as the database becomes more general and the task less specific. As a re-
sult such apparently easy tasks as filtering and classifying electronic e-mails into
personal mailboxes remain non-trivial because of the poorly-formatted nature of
such texts and the variations in the language used and the topics.

One of the reasons underlying these difficulties is the huge size of the set of
possible words compared to the size of each text and the number of texts available
for training the classifiers. This leads to large variations between texts inside of
a category in terms of vector space representations, and to difficult statistical
estimations during the training period. Not surprisingly support vector machines
outperform most “classical” classification methods ([9]) because of their ability
to deal with such issues.

This paper is an attempt to forget for a while the vector space model and
consider alternative ways of extracting informations from natural language texts.
Instead of parsing a text into tokens (words, word stems...) we just consider it as
series of letters and estimate a letter-generating source model, i.e. a conditional
probability of emitting a letter knowing the past, that “fits” the text correctly.
The model estimation is done by an algorithm called adaptive context trees stud-
ied in [13] and produces a new representation of a text as a context tree model,
which can be seen as a variable length Markov model. In order to study the
pertinence of this representation a text classification algorithm is developed and
tested. Encouraging results suggest that this representation might be able to
“catch” features correlated with the semantic content of the text but not based
on the words.

This paper is organized as follows. In Sect. 2 we highlight the general trade-off
between the richness of a representation and the difficulty to estimate it, which
motivates our representation introduced in Sect. 3. A classification algorithm is
derived in Sect. 4 and experimental results appear in the following sections.

2 A Trade-Off in Representation

A digital text written in natural language is basically a series of bytes which
has to be processed and transformed into a representation adapted to further
operations such as text classification. A commonly used procedure consists in
first rewriting it as a string of elements of a finite alphabet A4, e.g. a dictionary of
words, word stems, tokens or letters, and then representing the text as a vector
whose coordinates are the numbers of occurrence of each element of A in the
pre-processed string. Depending on the alphabet A different situations might
arise:

— If Ais very large (think of a dictionary of all possible words for English texts,
which typically contains several tenths of thousands of words) the semantic
information contained in the vector space representation is known to be very
rich, but the vectors corresponding to two related texts might be completely
different because of the small size of every single text compared to the size
of the dictionary. In other words the representation is unstable because it



is statistically difficult to estimate any hidden distribution in a large space
from few observations.

— On the other hand if A is very small (think of the 26-letters Latin alphabet
plus some punctuation signs) the vector space representation has the advan-
tage of being more stable even for small texts but the dramatic drawback
of containing few semantic informations. As an example the frequencies of
various letters might be a good indicator to guess the language of a text
(e.g. English versus French) because they are usually characteristic of the
language even for small texts, but they might not be appropriate features to
guess whether an English text is about politics of religion.

These remarks show that there exists a trade-off between the information
contained in a representation and the difficulty to estimate it from a finite and
possibly short text. As far as the vector space model is concerned various tech-
niques exist in order to decrease the size of the alphabet while keeping the
semantic contents of words ([14]): these techniques include word stemming, the-
saurus, stop words removal, feature selection etc...

Forgetting for a while the vector space representation it is possible to observe
the same balance phenomenon in an other setting : the representation of a text 7
by a letter-generating source, i.e. by a conditional probability P7(Y | X) where
Y is a random variable on the alphabet A which represents the next letter to
be generated and X is a random variable on A* = U,>0.A" (the set of finite-
length strings) which represents the past sequence of letters. The idea is that
such a source is characteristic of a certain category of texts, and the goal of the
representation is to estimate the source from a text supposed to be generated
by it.

Note that even if the alphabet is poor - think of ASCII symbols or the Latin
alphabet - this ideal representation P7(Y|X) is very rich because it suffices to
define a stationary process which might be assimilated to the process of writing a
text in the category specific of the source. In particular it contains the stationary
probability of any finite-length string, e.g. any word made of letters or even n-
grams of words.

Estimating such a conditional probability from a finite-length text can be
done with the help of finite-dimensional models, e.g. finite order Markov mod-
els. Such an approach leads to the same kind of balance as mentioned above
in the vector space model : if the chosen model is complex (e.g. large order
Markov model) then it potentialy can better mimic the unknown probability
P#(Y | X) than simpler model, but it is much more difficult to estimate from
a finite number of observations. In other words a trade-off has to be reached
between the complexity of the model used to estimate P(Y | X) and the risk
when estimating it.

This representation as a letter-generating source is however better adapted
to the trade-off quest than the vector space model because it is easier to com-
pare models of various complexities (e.g. finite order Markov models) and chose
a complexity than depends on the information available. In the next section



we present an algorithm that fulfills this requirement and leads to an adaptive
representation of any text as a more or less complex conditional probability.

3 Probability Estimation through Adaptive Context
Trees

We consider a text as a deterministic object from which statistical information
can be learned through sampling procedures. In order to get an independent
and identically distributed (i.i.d) sample (X;,Y;)i=1,...,5 We propose to follow
N times the following procedure : randomly chose a position in the text with
a uniform prior, let Y be the letter occuring at the selected position and let X
be the string made of the letters preceding Y backward to the beginning of the
text.

In order to estimate P7(Y|X) from the resulting i.i.d. sample (X;,Y;)i=1,... nv
we introduce a family of finite-dimensional conditional probability distributions
which consist in splitting the space of past strings X into a finite number of cells
and letting Y depend on X only through the cell X belongs to. One natural way
to design such a splitting is to let Y depend on X only through one suffix: this
covers in particular the case of fixed-order Markov models but more generally
leads to incomplete tree models as defined in [13]. We refer to this paper for a
more detailed presentation of incomplete tree models and just recall here the
main definitions.

An incomplete tree is a set of strings S C A* such that any suffix of any
string of S be also in S (a suffix of a string z} is any string of the form z!, with
1 € [1,1] including the empty string A of length 0). For any integer D we let Sp
be the set of incomplete trees made of strings of lengths smaller than D. A suffix
functional sg associated with any incomplete tree S maps any finite sequence
z € A* into the longest element of the tree that is a suffix of . Hence a partition
of A* is associated to any incomplete tree.

Let X denote the simplex ¥ = {# € [0,1]A, Zlﬂl 0; = 1}. Together with a
parameter § € X an incomplete tree defines a conditional probability distribu-
tion as follows:

V(z,y) € A* x A Pso(Y =y|X =2) =6(ss(x))y - (1)

In other words the conditional probability of ¥ knowing the past X only
depends on a particular suffix of X as defined by the context tree S. Now we
see that the number of possible models is very large, ranging from very simple
models with few parameters (e.g. the empty string only, which is equivalent to an
ii.d. model for letters) to very complex models when the tree size is large. The
true unknown conditional probability P7(X |Y’) is probably better represented
by complex models, but the parameter estimation based on a finite training set
is easier with simple low-dimensional models.

At this step it is necessary to define precisely the notions of “distance” be-
tween probability and of “estimation risk”. A natural measure of similarity in the



space of conditional probability distributions is the conditional Kullback-Leibler
divergence or conditional relative entropy ([15, p. 22]) defined by:
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where the first sum should be understood as an expectation.
Now suppose we have ani.i.d. set {(X;,Y;) = Z;;i=1,... , N} sampled from
the joint probability P7, and an estimator Pz~ (.|.) of the conditional distribu-

tion P7-(Y|X). Then it is natural to measure the risk of the estimator R(P) by
averaging the conditional relative entropy with respect to the i.i.d. sample used
for estimation:

R(B) =E [D (Pr(]) 1Pz (1))] - (3)

Following the work in [13] the i.i.d. sample Z{¥ can be used to build an
aggregated estimator Gy (Y | X) with the following risk bound:

Theorem 1. (Vert, [15])
Let

x~ =log(N +a) , (4)

and
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For any conditional distribution Py and any mazimal depth D € N the aggre-
gated estimator using a Gibbs mizture at inverse temperature By (see definition
in [13]) satisfies:

|S|Cn
R(Gn) < sesg,lgezs {R(PS’B) + N+1] "’ (6)
with
2 1
Cny = ( (1 +10g|A|)ﬁJ§1 +V|A4| - 1) <1 + m) . (7)

The interesting property of this estimator, whose exact definition and efficient
implementation are discussed in [13] and quickly summed up in Sect. 11, is its



capacity to find one particular model in the family which offers a good trade-
off between precision (as expressed by the term infy R(Ps)) and difficulty of
estimation (as expressed by the additional term Cte x |S| /(N +1)). It is called
adaptive because it estimates any particular distribution P at a good rate
without requiring any information about it, and adapts to its complexity.
These theoretical results suggest the following procedure to represent a text

T:

— Sample an i.i.d. set Z{¥ from the text by repeatedly choosing a position with
a uniform prior on the text invovled.

— Use this sample to train an adaptive context tree estimator which we denote
by PT-

4 Text Categorization

We can now describe a text categorization algorithm. In the classical setting of
text categorization a so-called “learning set” of texts is given to the classifier
together with the categories they belong to. The classifier task is to learn from
this set a rule that assigns one (or eventually several) category to any new text.
The classifier performance is measured by its ability to correctly classify texts
belonging to a so-called “test set”.

The representation of a text as a conditional probability presented in Sect.
3 can be extended to the representation of a category : it suffices to sample the
data used to train the estimator from any text belonging to the category C in the
training set in order to obtain a representation of the category as a conditional
probability Pe.

Comparing a given text z} to a category representation P¢ is naturally done
through the following notion of score:

Definition 1. For any given text T = x! let P1(X,Y) be the joint probability
distribution on A* x A defined by uniformly choosing an index i in1,... 1 and
setting (X,Y) = (z'7',2;). The score of the category C w.r.t. the text T is
defined by :

s7(C) = Ep, logPc(Y | X) . ®)

For a given text it is well known that such a score is maximal when Pe is a.s.
equal to P, and is related to the relative Kullback-Leibler divergence through
the following equality:

sc(T) = =H@r(|) =D ®r(-[)[|Be(-].) (9)

where H denotes the conditional Shannon entropy :

(1) = Y By log 5o - (10)
(z,y)



This equality shows that comparing the scores of two different categories
w.r.t. to a given text 7 is equivalent to comparing the relative Kullback-Leibler
divergence of the corresponding representations w.r.t. P. This suggests to use
this score not as a universal measure of similarity between a text and a category
but rather as a way to compare two or more categories w.r.t. a text, in order to
remove the influence of the entropy term.

By the law of large numbers it is reasonable to estimate the score of a category
w.r.t. a text by creating an i.i.d. sample Z¥ sampled from the joint law P, as
explained in definition 1, and to compute the empirical score :

K
8e(T) = 2 S logPe(¥i | X,) (11)
i=1

The categorization itself should then depend on the precise task to carry out.
We present in the following sections two experiments which involve two different
categorizers:

— On the Reuters-21578 collection (Sect. 6) we create a series of binary clas-
sifiers corresponding to each category, in order to compute recall-precision
curves for each category. This means that we need to sort the texts in the test
set by decreasing similarity with a given category. This similarity involves
the difference between the score of the category and the score of a “general”
category w.r.t. each text.

— On the Usenet database we create a classifier which maps any new text into
one of the predefined category and compute the proportion of misclassified
texts. This can simply be done by comparing the scores of all categories
w.r.t. to the text to be classified.

5 Initial Text Processing

The theoretical framework suggests to work on a small alphabet A in order to
get good estimates for the conditional distributions. As a result we decided to
use as an alphabet the set of 26 letters used in the Latin alphabet plus an extra
symbol noted ), resulting in an alphabet of size 27. The preprocessing of every
text in the following experiments consists in the very simple following procedure:

— Each letter is turned into small cap;
— Each ASCII character that is not a letter is transformed into §;
— Series of consecutive () are transformed into a single §.

Starting from a series of ASCII characters this procedures produces a series
of letters of the 27-letter alphabet, with the particularity that two () are never
consecutive.



6 Experiment on the Reuters-21578 Database

The Reuters-21578 collection' is a dataset compiled by David Lewis and orig-
inally collected by the Carnegie group from the Reuters newswire in 1987. The
“ModApte” split is used to create a training set of 9603 documents and a test set
of 3299 documents. A common way to evaluate a classification algorithm on this
dataset consists in building a separate classifier for each category with a “preci-
sion” parameter which can be varied to estimate the precision/recall curve. For
a given category precision is the proportion of items placed in the category that
are really in the category, and recall is the proportion of items in the category
that are actually placed in the category. The increase of one of these variables
(by changing the parameter) is usually done at the expense of decreasing the
other one, and a widely-used measure to sum up the characteristics of the pre-
cision/recall curve is the break-even point, that is the value of precision when it
equals recall.

Following this setting a graded measure of category membership for any text
can be defined as follows:

— Compute a representation Pc for the category.

— Compute a representation ]fhg for a general text of the database (i.e. by
setting G to be the whole database).

— Define the category membership of the text as:

me(T) = s7(C) — s7(G) - (12)

— Classify the text 7 in the category C if m¢(T) is larger than a threshold 4.
— Adjust the precision/recall trade-off by varying the threshold 4.

As mentioned in Sect. 4 it is necessary to measure differences between scores
of several categories w.r.t. a text to obtain a meaningful index. In this case we
compare the difference between a precise category and the general database in
order to detect texts which particularly “fit” to a category.

In order to carry out the experiment the TITLE and BODY parts of each article
is used as a starting text. Following experimental results available in [13] we
ran the adaptive context tree algorithm with 200,000 samples for learning the
continuous parameters and 100,000 sample for selection a tree, with a maximal
tree depth D = 9 and a penalty term pen = 3. These parameters were not
further optimize. Table I summarizes the break-even points computed for the
ten largest categories.

7 Experiment on the 20 Newsgroup Database

The second data set consists of Usenet articles collected from 20 newsgroups
by Ken Lang ([16]). Over a period of time about 1000 articles were taken from
each of the newsgroups, which makes an overall number of 20017 articles in the

! Distribution 1.0, available at http://www.research.att.com/lewis/



Table I. Break-even performance for 10 largest categories of Reuters-21578

Category |B-E point
earn 93
acq 91
money-fx 71
grain 74
crude 79
trade 56
interest 63
ship 75
wheat 58
corn 41

collection. Each article belongs to at least one newsgroup, and generally to only
one except for about 4% of the data set. The task is to learn which newsgroup
an article was posted to. In the case an article belongs to several newsgroups
predicting either of them is counted as a correct prediction. The performance of
the estimator trained on the learning set is measured in terms of accuracy, that
is the proportion of correct prediction in the test set.

Contrary to the binary classification context of the Reuters database the
categorizer must be able to map any new text into one out of 20 categories. In
that case it makes sense to compute the scores of each category w.r.t. to a given
text, and to assign it to the category having the largest score.

For each category we created a random subset of 200 texts to serve as a test
set and used the remaining texts to estimate the model representation. Before
running the experiment we deleted the binaries contained in some messages, and
kept the Body part of every message as a starting text. The adaptive context tree
algorithm was run with 400,000 samples for learning the continuous parameters
and 200,000 sample for selection a tree, with a maximal tree depth D = 9 and
a penalty term pen = 3. Like for the Reuters experiment these parameters were
not further optimize.

We ran two experiments in order to show how it is possible to influence the
representation by using the prior knowledge that the Subject line might be more
category-specific than the Body part. In the first experiment the Subject line
was simply discarde, and in the second one it was added to the Body and the
probability of drawing a letter from the Subject was ten times larger than the
probability of drawing a letter from the Body.

Table II shows the average accuracy obtained on each newsgroup and globally
for both experiments.

8 Automatic Text Generation

In order to give a flavor of the information contained in the models estimated to
represent various categories we used them to randomly generate small texts. Ta-
ble IIT shows texts generated from models representing three different categories



Table II. Accuracy for the 20 Newsgroup data set

Newsgroup No Subject|Subject favored
alt.atheism 81 86
comp.graphics 80 89
comp.os.ms-windows.misc 81 86
comp.sys.ibm.pc.hardware 80 86
comp.sys.mac.hardware 84 92
comp.windows.x 85 92
misc.forsale 73 82
rec.autos 90 96
rec.motorcycles 91 93
rec.sport.baseball 93 94
rec.sport.hockey 95 96
sci.crypt 93 96
sci.electronics 90 94
sci.med 92 95
sci.space 93 95
soc.religion.christian 92 95
talk.politics.guns 88 91
talk.politics.mideast 91 94
talk.politics.misc 70 73
talk.religion.misc 65 73
Total 85.4 90.0

in the Usenet database. One can observe that many English words appear, but
that many features including stylistic ones are caught in the models. For instance
the level of language looks much higher in the discussion group about politics
(with many long words) than in the group about baseball (which contains many
“stop words”).

9 Discussion

The Reuters data set is known to be well adapted to classification algorithms
based on words only. As mentioned in [11] and [3] categories like “wheat” or
“corn” are efficiently predicted by testing the presence of a very small number
of terms in the text : a simple classifier which satisfies a document according
to whether or not it contains the word wheat has an accuracy of 99.7% on the
corresponding category. In such a situation our result are not surprisingly pretty
bad, and much worst than results reported by other algorithms. For classes like
“acq” with a more abstract concept our results are near the average of classical
methods based on words as reported in [9]. In the whole the results we present
are worse than results reported for state-of-the-art classifiers, but are comparable
to results reported for naive Bayes classifiers.

The 20 Newsgroup database is known to be less formatted and many cate-
gories fall into confusable clusters. Even though comparison with other reported



Table ITI. Automatic text generation

talk.politics.mideast:

oving race her shaights here were vii agraph associattements in the greeks who
be neven exclub no bribedom of spread marinary s trooperties savi tack acter
i ruthh jake bony continues is a person upi think veh people have presearchat
p notect he said then proceeded in tulkan arabs the world wide us plotalking
it and then he syn henrik armenian ten yesterday party com ten you conspik
kill of siyalcincould palestiness and they thuma the interviewin also the serious
adl the jewish victims and ms

soc.religion.christian:

g much direciate clear the ances i did the son that must as a friend one jerome
unimovingt ail serving are national atan cwru evid which done joseph in re-
sponse of the wholeleaseriend the only churches in nead already first measure
how uxa edu or forth crime the result the sin add and they christian under
comes when so get is wrong i wonder does in heaven and neglish who was
just sufferent to record telnk stated and statementsell which houserve that the
committed ignore the other reading that

rec.sport.baseball:

rschbecaust what is necessarily anyour defense in the dl vpecifiedu finger who
two hitter and nextrap it is institut theoryl i cards win at aaa his lavinelatio
statistic hitey loses upset himself a try team he pretty 1l scott leyland in the
words future current be internetics cornell edu edwards year for open t i am
no fielding to be but bell asday still in the totalentine nixon kiddibbly anothis
year hankee most a | reseats of ronto lose is in article price in revenuestion h
is ba of basick andr

results is difficult because of the non-standardized splitting procedure the perfor-

mance of our algorithm looks not far from the state-of-the-art level of accuracy
(around 90%).

These results suggest that looking at the words is not the only way to get
information on the semantic content of a text or at least on the category it
belongs to. Even though looking at the distribution of characters is intuitively
more related to the style of a text than to its meaning our experiments show
that to some extent this intuition is false.

One positive point in our approach is that no dictionary, stemming algorithm
or word selection procedure is required as a text is just considered as a sequence
of letters. This results in two interesting features:

— It might be a good approach to languages like Chinese or Japanese where
the parsing and indexing by words is less natural and more difficult than in
English;

— Once the models are learned the categorization of a text is very quick as no
preprocessing or indexing is required.



10 Conclusion

We presented a new way of representing texts written in natural language through
adaptive statistical estimators. In order to have good statistical properties we
decided to work on the character level, which might look very challenging as it
is usually considered that representing a text as a series of words or word stems
is the best approach possible. However results obtained for text classifiers based
on this representation suggests that it is still able to catch semantic contents.

This low-level representation is clearly not optimized for the particular task
of text categorization. Encouraging results suggest however different fields of
investigation in the future, including:

— the development of other representations than the conditional probability of
a character knowing the past, which should be task-oriented;

— the combination of this approach with word-based state-of-the-art algorithms
for text categorization, with the hope that the features used by both ap-
proaches be sufficiently different to generate a gain in performance.

11 Annex: the Adaptive Context Tree Estimator

This annex is to describe very briefly the procedure we follow to build the repre-
sentation of a category, that is a conditional probability. The reader should refer
to [13] for further details.

The parameters to set are:

— the maximal depth D of the tree models family;
— a penalty term pen which represents the cost of a node.

The algorithm is fed with two independent training sets Z; and 2, of size N;
and N, respectively used to estimate the continuous parameters and to select a
model. These sets are used to update counters attaches to each node s € T =
UP A% of a context tree of depth D as follows:

Vie A al = Z 1(sisasuffixof X and Y =1) (13)
(X,Y)eZ

Vie A bl = Z 1(sisasuffixof X and Y =1) , (14)
(X, Y)ez,

ng = Z 1 (s is a suffix of X)) . (15)
(X,Y)eZ

A functional w is then recursively computed on each node of the context tree,
starting from the leaves and going back to the root:
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At every step the sons selected in the subset N of the second equation are
marked. The largest incomplete tree model made of marked nodes is then selected
as the estimator P, together with parameters (see Sect. 3) defined by:

al +1

(17)
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