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Chapter 1

Introduction

1.1 Human language technology

Natural language is the language through which humans communicate. It is therefore widely
used in our societies for exchange and storage of information. The last decades have witnessed
an explosion in the amount of multimedia data available in a digital form, including texts,
speech recordings or videos, in which natural language plays a central role to convey infor-
mation. These data are stored in ever-increasing databases like corporate databases, digital
libraries or the World Wide Web, whose sizes and growth rates prevent any human from
taking the time to consult the entire set of documents in order to find some information he
may be actively or passively looking for.

There is therefore a big incentive to develop technology to automatically process the
information stored as natural language objects on the one hand, and to enable the machine to
communicate using natural language skills on the other hand. Important applications which
have been developed in the last decades of the twentieth century and are still subject to active

research in 2001 include the following non-exhaustive list (see an extensive review in [28]):

e speech recognition,

optical character and handwriting recognition,

machine translation,

document classification and routing,

data mining,

information extraction and retrieval from multimedia databases.



10 CHAPTER 1. INTRODUCTION

The reason why these tasks remain challenging is probably that the complexity of natural
language prevents its mechanisms from being fully explained by a set of deterministic rules. To
the contrary many methods involving an explicit stochastic modelling of natural language have
been developed since the early 1980’s and have been shown to outperform most deterministic

approaches in almost all tasks we previously cited.

1.2 Stochastic language modelling

The general idea behind statistical approaches to natural language processing is that a stochas-
tic process might be a good approximation to the process of generating a document in natural
language. It does not mean that the real generating process by a human being is random by
nature, but rather that this approximation provides a convenient way to represent complex
objects and process them. In particular statistics gives a framework to capture regularities in

natural language and include soft constraints in a decision making process.

1.2.1 Applications of statistical language models

To illustrate the power of stochastic models let us review several applications which currently
heavily rely on stochastic process approximations to natural language. Here we suppose that
one has been able to design a stochastic process on a finite alphabet A which “mimic” the
behavior of the text generating process by human, where the alphabet A can be thought as
the set of letters in the Latin alphabet, as the set of words in an English dictionary or as a

set of ideograms to model Chinese or Japanese.

e Text compression and transmission. Information theory reveals that the knowledge
of a process distribution can be used to design codes in order to compress and transmit
data generated by the process. One of the first applications to stochastic modelling of
natural language was therefore the compression and transmission over noisy channels of
texts written in natural language, which is already presented in Shannon’s pioneering
book [78].

e Bayes decision framework. Many state-of-the-art methods in applications as differ-
ent as speech recognition ([46]), optical character and handwriting recognition ([28]), or
machine translation ([18], [19]), rely on the same paradigm: a “source-channel” model
combined with a Bayesian decision. All these applications have an input which is mod-
eled as a random variable I (which can be an acoustic signal, a digital image, or a

sentence in a foreign language to translate) and output a sequence of words W. In the
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“source-channel” model one assumes that there exists a joint distribution P(I, W) and
follows the maximum a posteriori Bayesian rule to chose an output sequence W* as

follows:

W* = arg mvgxP(W | I)

PW)P(I|W)
P(I)

= argmmz}xP(W)P(HW) .

= arg max
& w

This decomposition shows that two statistical models play a role:

— the channel P(I|W) which depends on the application considered,

— the a priori probability of strings P(W) which is called the language model and is

derived from the process distribution.

e Bayes decision framework (bis). In other applications including automatic docu-
ment classification or information retrieval ([65], [11]) the same framework can be used
with the language model playing the role of the likelihood instead of the prior. Consider
for instance a document classification task, where every submitted document must be
classified in one of k classes. Suppose that one has been able to design k language mod-
els (P1,...,Px) which correctly mimic the typical generating process corresponding to
documents belonging to each class. Then the Bayesian classifier defines a prior P(i) on
the set of classes and assigns class k* to a document W by maximizing the posterior

probability of the class:

k* = arg max P(i|W)
=1,k

= argiznllgﬁkP(i)Pi(W) :
e Text modelling. Going further to the direction of local language models one can
consider that if a stochastic language model P can be learned from a given object
written in natural language then it can be used as a representation of that object. The
object can be a category of texts as in the previous example, but can more generally
be any text one want to process. Of course the text should be “long enough” for a local
language model to be learned from it, but the emphasize here is not on the ability of

the stochastic process to mimic natural language: it is rather on its ability to represent
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the initial text in a convenient and efficient way for further processing. Hence the
stochastic modelling is used in that case as a way to represent a complex object. A
typical application of this approach is the comparison of two texts: if each text is
represented by a process distribution then the similarity between the two texts can
be measured in terms of the distance between the two process distribution, where the

distance is defined mathematically in the space of the process distribution.

1.2.2 Current language models and issues

A language model is a discrete-time process distribution on a finite alphabet. The most
popular models up to now have been the so-called n-grams models, i.e. Markov models of
order n — 1. When the alphabet is a set of words to model English, for instance, n is usually
set to 3, i.e. the probability of a word only depends on the two preceding words. Other more
sophisticated models have been developed (see a survey in [70]) but barely outperform the
basic n-grams models in most applications: they include decision tree models ([4]), stochastic
context free grammars ([47]) or exponential models ([12]).

Among the difficulties met when building a language model one can mention the following.

e The statistical models involved have huge dimensions. A typical word dictionary con-
tains at least 20,000 words, so the dimension of a basic trigram model is 20,000% =
8.10'2...

e The number of observations is never infinite. In case one wants to build a local language
model from a possibly small corpus (e.g. to model a text category) the situation is even

worse than when the goal is to build a “general” language model.

e The language models have been experimentally shown to be highly context sensitive,
which means that local language models outperform general language models for most

applications.

e There exist many long distance correlations in language which can not be captured by

local models like trigrams.

These difficulties can be summed up in one sentence: we would like to be able to learn
from as few observations as possible (to obtain local models) models as complex as possible.

One can observe that this paradox covers in fact two different situations:

e when the goal is to build a global language model the model complexity is usually fixed
a priori (e.g. a trigram model) and data are collected until the models is considered as

correctly trained, because the amount of data is assumed to be infinite in that case;
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e when the goal is to build a local language model (e.g. for a category of text) then the
amount of data is fixed a priori, and the complexity of the models should be adapted
to it.

1.2.3 Motivations for this thesis

This thesis is an attempt to develop methods for building local language models and suggest
applications where the model learned is used to represent the original object written in natural

language. The goal of this thesis is therefore twofold.

e Develop algorithms for efficient statistical estimation. In view of the discussion
in Sect. 1.2.2 we focus on the issue of estimating a possibly very complex process
distribution from a finite number of observations. The main contribution of our work is
to propose several methods and study their performance. The constraints we deal with
make us work in a non-parametric framework (i.e. no strong assumption is made on the
unknown distribution to estimate) and prove non-asymptotic results (i.e. we have in

mind the question: given a finite number of observations, what can we learn from it?)

e Use these estimators as representations of the original text for various appli-
cations. As an application of the methods we develop we suggest a way of measuring
the similarity between texts by the similarity between the corresponding estimated pro-
cess distributions, and provide experimental evidence that such a similarity measure is

meaningful for many applications.

1.3 Mathematical formulation

Let us formalize more precisely the issue we are confronted with. An finite alphabet A is given
and our goal is to estimate a stationary process distribution on A from a “finite number of
observations”. A way to characterize a stationary process T%, = (T;);cz with distribution P is
by its conditional distribution P(Ty|T—ZL ). In the reality however the observations we might
get are never infinite so the problem is more pertinent if the length of the past is limited
by an integer D € N. The issue is then to estimate a conditional probability distribution

P(Ty | T_}) from a finite number of observations.

1.3.1 Statistical framework

Let X = AP be the space of strings of length D to represent “the past letters” and ) = A be

the space of letters to represent “the next letter”. Let Z = (X,Y) be a random variable on a
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probability space (2, F,P) with values in X x ) and probability density P. Let Q be the set

of conditional probability densities for Y conditionally to X, i.e.:

V@neQxk, Y Quln=1.
yey
As a measure of similarity between the true unknown probability density P and any
conditional density Q € Q we use the conditional relative entropy or conditional Kullback-
Leibler divergence ([29, p. 22|):

plend)(pljQ) = 3 Pley)log 0D
ey Qy|z)
This loss function is known to be non-negative and null only for Q(y|z) = P(y|z) as soon as
P(z) > 0. It plays a central role in information theory and is usually used to measure the
pertinence of language models ([25]).
Let n € Nand (Z;)}_; = (X;,Y;)]~, be a series of independent and identically distributed
random variables with common density P. An estimator ) for the conditional density P(y | )

is a sequence of estimates
o

{n: @xy =0}
n=0
indexed by the number of observations used by the estimates. For any (z,y) € X x Y we
write Qn(y | z; 2}) for the values of the conditional density obtained from z? by the estimator
Qn.
The goal of the estimator Q is to estimate P(Y | X) from the observations Z. The risk

of the estimator is defined as its expected loss, i.e.:
R (P.n,Q) = Eponazy D (2| Q)

= Z P(z}) Z logm

P e(XxY)" @oexxy  @nlz2)

The problem is now to define an estimator Q with small risk for “any P” and “any n’.
This formulation can result in several different problems in statistics, which we now briefly

review in order to motivate our choice of designing “oracle estimators” (see Sect. 1.3.3).

1.3.2 Classical frameworks for density estimation

In the classical setting of statistical inference P is supposed to be unknown but to belong
to some set {Pp,0 € ©}. Under this hypothesis the quality of an estimator has been widely

studied from two points of view: the Bayesian and the minimax ones.
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The Bayesian approach

In the Bayesian approach the set © is a measurable space on which a so-called prior probability
distribution w(d@) is chosen. The risk of an estimator P, i.e. R(P,n, P), is averaged over ©

with respect to w(df) which results in the Bayesian risk:

R(B2YS) (0, w(dh),n, P) = By (anyR(Po,m, P) .

The Bayesian risk usually makes sense when one has a prior knowledge about the unknown
density P, which is not the case in the situations we will consider in the sequel. Therefore
we will not use the Bayesian risk as a measure of the performance of estimators, even though

Bayesian analysis will be a source of inspiration for building estimators.

The minimax approach

In the minimax approach the performance of an estimator is measured in terms of the worst-

case risk:

R(©,n, P) = sup R(Py,n, P) .
0cO

The minimaz risk is defined as:

A~

R(©,n) =infR(O,n, P) ,
P

where the minimization is over all estimators. The minimax risk approach is interesting only
when the minimax risk tends to zero as the number of observations tends to infinity, in which
case the rate of convergence to zero is characteristic of the class {Fy,0 € ©}. It is usually
hopeless to find an estimator P whose worst-case risk is exactly the minimax risk for every
number of observations n, and optimality is measured asymptotically by one of the following
notions ([60]):

e An estimator P is said to be asymptotically efficient if

A

R(O,n,P)=(14+0(1))R(O,n), n— oo .

e An estimator P is said to be optimal in order if

R(©,n,P) =0(1)R(O,n), n— o0 .
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This minimax formulation only makes sense if P belongs to {Py,8 € ©} because in that

case the risk of an estimator P is upper bound by the following straightforward inequality:

VP e {P),0 € ®}, R(P,n,P)<R(O,n,P) .

Minimax rates of convergence have been extensively studied for various loss functions and
functions classes. It is for instance known that the minimax rate of convergence for density
and regression estimation is related to the metric entropy of the the parameter space in several
general frameworks. The theory of minimax estimation being too rich to be summarized in
this introduction we refer the interested reader to classical references on the topic including
(but not limited to) [81], [13], [61], [85], [14], [8], [60].

An obvious issue with the minimax approach is that the fewer assumptions are made on
P the larger the minimax risk. This worst-case philosophy is particularly objectionable when
the class of possible P is a union of several classes with various complexities. i.e. various
minimax risk, because in that case one could hope that densities belonging to low-complexity
classes could be better approximated than densities belonging to large-complexity classes.

This is the issue addressed by adaptive estimators as follows.

Adaptive minimax approach

Suppose that the family {Py,0 € ©} is a union of smaller families of different regularities, i.e.:
oe=Jeos,
i€l
where I is a countable set. The complexity of a particular set ©; is represented by its
associated minimax risk R(0;,n) for any n € N.
The goal of adaptive estimation is to construct a single estimator P which is simultaneously

optimal in order on each class ©;, i.e., that the following holds:

Viel, R(©;n,P)=01)R(O;n), n—oco. (1.1)

A lot of attention has been devoted to the definition and the analysis of adaptive estimators
in the recent years. One can cite adaptive function estimators for ellipsoid classes (|40] ,[39]),
for some Lipschitz classes using adaptive kernel estimators ([45]) or for Besov classes using
wavelet analysis ([36], [37]). Adaptation schemes by model selection using penalized maximum
likelihood has been deeply studied in [15] and [6], and general adaptation risk bounds for
density estimation based on minimum description length (MDL) criterion have been derived
in [9].
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Adaptive estimators enable the statistician to build a family of models (©;);er which he
thinks should contain the true unknown object P to be estimated and still obtain a risk of the
same order as if he knew the precise class ©; that contains P. Thus adaptation refers to the
ability of an estimator to be minimax optimal for every class ©;. As a result this approach
is pertinent only if P belongs to {FPy,0 € ©;} for some i € I and gives an asymptotic result,
i.e. the asymptotic risk of the estimator with respect to P is of order of the minimax risk
on ©;. This approach is not satisfactory for our problem characterized by the facts that no

assumption should be made on P and that we are interesting in non-asymptotic risk bounds.

1.3.3 Removing assumptions on P

In order to work with as few assumptions on P as possible we need to reverse our point of view
and consider universality with respect to a class of estimators and not to a class of functions
to estimate. In other words the question addressed becomes the following: given a set of
models, is it possible to build an estimator which performs almost as well as the best density
in the best model? As for the classical setting this question can be declined for a single model

as well as for a family of models as follows.

Universal minimax approach

Let us call P the set of probability densities on X' x Y. In the general setting P is just assumed
to belong to P. Suppose now that a family of conditional densities {Py, 8 € ©} is given, and

consider the set of estimators Q with values in that family, i.e.:
VneNVZl € (X x V)",  Qnl.|.;2") €{P),0 € O} .

For general P € P the risk of such an estimator Q might not converge to zero because it is

lower bounded by the loss of the best approximation of P in the family:

V(Pm) ePxN,  R(PnQ) > nfR(Pn.F)

where R (P,n, Py) = plcond) (P|| Py). Even though @ can not estimate P precisely a per-
tinent question is the following: is it possible to design an estimator Q which approximates
well the projection of any P on the family {FPy, 8 € ©}7 This question leads to the following
definition of the universal risk of an estimator:
R (universal) (P,n,Q,@) — sup [R (P,n, Q) _ inf R(P,n,Pg)] ,
PeP 0€o
and to the following definition of a universal minimaz risk:

R(universal) (P, n, @) = inf sup [R (P, n, Q) —inf R (Pa n, Pg):| ’
Q PeP 0e®
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where the minimization is over all estimators Q with values in {Py,# € ©}. Like in the classical
minimax setting we are interesting in estimators Q whose universal risk is asymptotically

comparable to the universal minimax risk, i.e.:
R (universal) (P,n,@,@) _ ,Y(n)R(universal) (P,n,0) ,

where ~y(n) is of order 14 o0(1) or O(1) in which case we respectively say that Q is asymptot-

ically efficient or optimal in order for the universal minimax risk.

Oracle estimator

Let us now present the oracle point of view, which has been introduced by Donoho and
Johnstone in the context of wavelet approximations ([35], [36], [37]) and which is the point of
view we will adopt in this thesis.

Suppose that a family of models is available, i.e.

o=Je:,
icl
where I is a countable set. When P is estimated by an estimator @; with value in {Py,0 € ©;}
for some 7 € I then the best possible uniform bound for the risk is:

VPeP,  R(PnQ)< inf R(Pn,Py)+ ROV (P o) .

For any n € N the best risk upper bound which could be obtained using a family of

estimators {Q; }icr is then:
(oracle) 1. ) — ).
R (P AQibier) = infR (P, Q)

This risk is called the oracle risk because it would require an oracle to decide which 7 € I
achieves the smallest risk bound for every P € P and n € N. Even though oracle usually
don’t exist in nature it is sometimes possible to design estimators Q which satisfy an oracle
inequality of the following type:
VP € P, R(RmQ)gm;b%7uRnJ@+4an@mwmm(nm@g . (12)
1€ €0;
Oracle inequalities have been obtained in relation with wavelet approximations (|36], [37])

and more recently general methods have been developed to build oracle estimators (|23], [22],
[24]; [95])-
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Advantages of oracle estimators

An estimator Q which satisfies the oracle inequality (1.2) has the following interesting prop-

erties:

e No assumption is made on P, which is approximated by its projections on the various

models designed by the statistician.

e For any i € I, Q approximates P almost “as well” (i.e., up to the O(1) term) as the best
estimator Q; of the projection of P on {Py,0 € ©;}. In particular the risk R (P,n, Q)
converges to the best possible risk:

inf inf D(cO0d)(p|| By

icI 9€O; ’

at the best possible rate up to a multiplicative constant.

e For any n € N and 4 € I the risk R(P,n, Q,) of an asymptotically efficient estimator
QZ- can be seen as the sum of a bias term infypce, R(P,n,Pp) and an estimation risk
o(1)yr(universal) (p '@,y which quantifies the difficulty of estimating a density in
{Py,0 € ©;}. The oracle inequality (1.2) shows that the estimator @ achieves a trade-
off for any n € N between the bias term and the estimation risk for every model.
Therefore its behavior can also be considered “almost optimal” for any finite number of

observations.

These properties clearly fit and quantify the constraints of our problem at hand, namely
that the estimator Q should approximate “well” any P € P for any n € N. Therefore the main
efforts of this thesis concentrate on the problem of designing and studying estimators for an

unknown conditional probability density which satisfy an oracle inequality for some family ©.

1.3.4 Link with universal coding

A central question which arises in information theory is the following: given an unknown
process distribution P, how to approximate its marginals on blocks of length n under a
Kullback-Leibler loss criterion? An estimator is a process distribution P whose risk is defined
by:

R (compression) (P,n,P) = Z P log If(tZ) '
treA” P (tl)

This risk is also called redundancy and quantifies the loss in average code length when the
probability P is used instead of P to encode messages of length n from the source P. The

Bayesian and minimax risks with respect to a family {Py,0 € ©} are defined in a similar way
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as for the density estimation problem. The redundancy-capacity theorem of universal coding
([42], [32], [44]) identifies the minimax risk as a channel capacity which measures the richness
of the class {Pp,0 € ©}.

As pointed out by many authors density estimation is closely related to universal coding
([5], [26], [9], [93], [43]). It would be beyond the scope of this introduction to develop this
relationship, so let us just mentions three remarks about information theoretic approaches

which were a source of inspiration for our work.

e Hierarchical universal codes (see a review in [58]) are equivalent to adaptive estimators
in density estimation. Two general approaches have been investigated to design such
codes: the first one consists in selecting one model by minimizing the total description
length of the data ([71]) and the other one consists in building a Bayes mixtures of
all models ([72], [41], [91]). Transposed in the framework of density estimation the
latter approach has been investigated recently and resulted in several general techniques
for model aggregation as opposed to model selection ([23], [24], [22], [95]). Our work
further investigates these techniques of building mixture estimators which satisfy oracle

inequalities.

e The context tree weighting algorithm ([91]) suggests an efficient implementation for
estimating Markov models based on context trees, which can be adapted to conditional

density estimation.

e Recoding provides a way to represent the design variable X more efficiently, by short-
ening the average number of bits used to represent it. As a result models with smaller

dimension can mimic P after this recoding (see Part 5).

1.3.5 Choice of the alphabet

At this point it is time to discuss the choice of the alphabet A used to define the natural
language generating process. Depending on the language considered several “natural” choices
might exist: letters, words or “tokens” for languages like English of French, single ideograms
or words for Chinese or Japanese, etc...

Let us focus on English, which is the language used in the experiments we carry out in
this thesis. Language models are overwhelmingly based on words or word tokens dictionary,
because of the underlying semantic content of words. However the size of such dictionaries
is typically of the order of several tenths of thousands of entries, which make any density
estimation from a “small” number of observations (typically a newspaper article) very tricky

from a statistical point of view.
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For this reason we decided to work with a much smaller alphabet, composed of the 26
letters of the Latin alphabet and a supplementary character for spaces, punctuation, numbers
etc... We discuss in more detail this choice in Part. 4 and provide experimental evidences that
a letter-based process modelling can capture semantical information as well as a word-based
process modelling.

From a mathematical point of view one can ask the following question: what is lost when
one decides to work at the letter level instead of the word level in terms of discrimination
power between different processes? More formally, let A be the letter alphabet, € be the
supplementary character to separate words and S C {e} x A* be a finite dictionary, where
A* = U2, A™ is the set of finite strings made of letters (hence a word can be written as
w =€ ...q_1, where a; € Afori=1,...,l,and l = (w) is the length of the word w). Let
P and Q be two stationary processes distributions on SZ, which we call word processes. As
stated earlier the difference between the two process P and () is measured in terms of their

relative conditional entropy, i.e.:

dP
D (P(dW1 | W2) || Q(dW: |[W2 ) = / PdW!_)log — (dW; | W)
Wl _ es-Nxs§ dQ

if dP/dQ(dWy | W?2,) exists, +oo otherwise.

These stationary process distributions P and @ on S% can be mapped to stationary process
distributions IIp and IIg on (AU {e})Z which we call letter processes and whose sample paths
are infinite concatenations of words (see [79, p. 103] for the construction of IIp by the cutting
and stacking method). The corresponding measure of similarity between the processes IIp

and Ilg is:

D (LLp(dX1| X2 [ Mo (dX1 | X25))
dilp
& I,

Mp(dXL)lo dX; | X°%) , (1.3)

/Xiooe(AU{e})—Nx(AU{e})

if dllp/dllg(dWy | W?O,) exists, +oo otherwise.
The following lemma (whose proof is postponed to Sect. 1.5) shows that the effect of
working with the letter processes IIp and Ilg instead of working with the word processes P

and @ is to divide the conditional relative entropy by the average length of the words.

Lemma 1

D (Ip(dX1 | X2) I Tg(dX1 | X2,))
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1
_ q 0 . -
EP(dwl)l(Wl)D (P@Wy | W0 ) || QdW: |WP))

As a result the “topology” generated by the conditional relative entropy on the space
of stationary word processes is conserved when these processes are considered as stationary

letter processes. Suppose for instance that (P;(dW: |W°_)) are k given conditional

i=1,...,k
distributions and one wants to label any new word process distribution ¢} by choosing the

label i € {1,... ,k} for which

D (Q (dWl | Wgoo) H P; (dWl | WEOO)) (1-4)

is the smallest (see Part. 4). Then Lemma 1 shows that this choice can be based on the

comparison of the conditional relative entropies of the corresponding letter processes as well.

1.4 Contribution of this thesis

The remaining four parts of this thesis are made of published or submitted research articles.
In spite of their obvious lack of unity let us try to highlight their coherence with respect to

the general problem we presented in this introduction.

1.4.1 Design and study of oracle estimators

In view of the discussion in Sect. 1.3 we decided to investigate the possibility of designing,
studying and implementing estimators for a conditional density which satisfy oracle inequali-
ties like (1.2). In this framework we suppose that one is given a set of i.i.d. observations Z{¥

which should be used to build the estimator.

Context tree models

A family of models to approximate P(Y | X) is defined in Part 2. For each model the variable
X only depends on Y through one particular suffix as encoded in a context tree. These model
generalize the models used in [91] to build the context tree weighting algorithms. This family

is used in the other Parts as well.

Estimation by splitting the observations

In Part 2 we define several estimators which partition the observations Z{¥ into two groups.
The observations of the first group are used to build a set of estimators {Q;}ics for the

projections of P on every set {P,0 € O;}, and the observations of the second group are
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used to “aggregate” the estimates {Qz}ze I, i.e. to build estimators for which we prove oracle

inequalities.

Estimation without splitting

In Part 3 we show how to estimate the projections on the different models and aggregate the
models without partitioning the observations into two groups, i.e. by using the same data
to estimate continuous parameters and discrete models in the same time. The estimator we
define is proven to satisfy an oracle inequality, and we discuss the difference between this
estimators and “twice-universal” estimators used in coding theory due to the difference in the

criterion to optimize.

1.4.2 Experimental results

An experimental protocol is defined in Part 2 and Part 4 to draw i.i.d. samples from natural
language texts and use the oracle estimators to define a measure of similarity between texts.
This measure is used in Part 2 to carry out an unsupervised text clustering experiment which
demonstrate the capacity of the estimator to recognize from which book a text is extracted,

and in Part 4 to define a method to automatically classify texts into predefined categories.

1.4.3 Change of representation

In Part 5 we consider the problem of changing the representation of the past string to predict
the next letter. In particular we present an iterative algorithm where the estimation of the
process distribution in each iteration is used to recode the data in the next iteration, in order

to concentrate more information in the D letters the past is made of.

1.4.4 Sampling from a Markov chain

In Part 5 we also consider the problem of sampling data from a realization of a Markov chain.
Indeed i.i.d. observations are usually obtained by sampling random positions in a given text,
which can be seen as one realization of the unknown Markov process we try to estimate.
In the case the data are sampled from the empirical distribution of the process (i.e. form a
bootstrap sample) we prove an oracle-like inequality for the density estimator using a measure

concentration result for the empirical measure of a Markov chain.
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1.5 Annex: proof of Lemma 1

For any two strings (u,v) € ((AU {e})*)? we say that u is a prefiz of v and write u < v if
there exists a string w € (A U {e})* such that v = uw. Let S_ be the set of prefixes of the

elements of the dictionary S, i.e.:
S ={ue(AU{e})* : eSS, u<v} .

By definition of the conditional relative entropy we can write:

D (Ip(dX1 | X%,) | Ho(dX1 | X2y))

_ / Mp(a® ) 3 Tp(ar ]2 ) In

Hp(z1 |22 5)

oo z1€EA HQ(xl |w900)
HP 1 ’w(l S
:/ S (w0 ) 3 (i |l o) In b L 200)
w® SES_ z1€EA HQ(wl ‘ w_OOS)

0

where the last inequality is due to the fact that the mapping z°  — w®__s is a bijection

from the support of IIp to S™N x S_. Let us introduce the notation:

V(s,w) €S- x SY, piwle)= ) Pluwu’y) .

s<w,weS

and define gs(w® ) the same way by replacing P by Q. By definition of the concatenated-
block process the followings hold:

0 g ¥ (Lw)P@) 1 Puly)
Hpl0=ees) = sgu;l (EP(dWI)l(Wl) * lwn) Pwn) )

1

=—— xPw )psw’) ,
Epaw,)l(W1) (0=00)Ps (1-0)
and
0
Dsz ('w_ )
. psl(fw(i x if zq ?é a
Op(z1 | w . 8) = P (s|w80 )
O_OO fz1 =«
pS (w—oo

We can now resume the computation:
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D (Tp(dX: | X3) || Tg(dX1 | X3))
P (s | wgoo)
[Pt o (Pt p ()
_/wgm Epwwl)uwl);:_ps( °°)< P (00) " Q (sTwly)
4s (wo—m)

Dsz (wgm)

n Z Dsx (wo(loo) In Ds (’U)O_oo) )

zeEA,xz#a Ps (UJ?OO) Psz (U)goo)

ps (wl)
P (s | wo_oo)
— P(wgw) S ,wO n Ds (wgoo)
a /wgoo E p(awy)l (W) sgg:_ <P( [05ec) ] Q (s|wly)
s (w(lOO)
Dszx ('woo_oo)
+ Z Psz (w(ioo) In %)
z€A,z£a 8T \ =00/
Ps (wo—m)
B P (wgoo) ol " P (5 | w(loo)
B /wooo Ep(awy)l(W1) Sg (P( [0%0c) ] Q (slwly)

w?
0

P (wgw)lnu+ > psz(w(ioo)lnfngw)

s (w—oo) zEATF Dsz (w—oo

:/0 P(w—o_oo)) Z p(w1|wgm)lnw

w? EP(dwl)l(Wl wiES Q (wl |w(loo) ’

where the third equality results from the fact that

V(Saw(ioo) €S x 8" Ps (w(ioo) =P (5 ‘ wgoo) + Z Psg (wgoo) :

zeA,xF£

This finishes the proof of Lemma 1. [J
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Chapter 2
Adaptive context trees

Abstract

In the finite alphabet context we propose four alternatives to fixed-order Markov
models to estimate a conditional distribution. They consist in working with a
large class of variable-length Markov models represented by context trees, and
building an estimator of the conditional distribution with a risk of the same order
as the risk of the best estimator for every model simultaneously, in a conditional
Kullback-Leibler sense.

Such estimators can be used to model complex objects like texts written in natural
language and define a notion of similarity between them. This idea is illustrated

by experimental results of unsupervised text clustering.

2.1 Introduction

Consider the problem of measuring the similarity between two long strings in the finite al-
phabet context, e.g. two English texts or two DNA sequences. A possible approach to cope
with the impossibility of comparing them directly consists in replacing the initial strings by
representations easier to handle and compare. For this purpose finite order Markov models
are widely used to catch statistical information from the initial strings and represent them. A
trivial example is the so-called vector-space model introduced by Salton et al. [74] for index-
ing texts by the statistical distribution of words they contain, which can be seen as a 0-order
Markov model. Larger order models appear for language models, e.g. in speech or optical
character recognition systems (see a survey in [28]),

The order of any Markov model is usually limited because the number of parameters to

estimate increases exponentially with it, while the initial strings have finite length. On the

27
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other hand these strings are supposed to have long-range correlations, which might be better
caught by models of high order.

Our contribution in this paper is to present and study several alternatives to fixed order
Markov models, and show through an experiment of unsupervised text clustering how to
use our results to measure similarities between English texts. More precisely we consider a
larger class M of Markov models in which the conditional distribution of the next symbol
depends on a variable number of preceding symbols. Hence a particular model m € M is
a parametric family of conditional distributions {Pgm,Hm € 0,, c RU™) } Such models are
interesting because they can catch long-range dependencies on some particular strings without
having necessarily an exponentially growing number of parameters. However it is unknown a
priori which model to use when confronted with a given text or DNA sequence: we show in
the sequel how to use “aggregation rules” among models, i.e. methods of combining several
models as opposed to selecting a particular one, to build an estimator P whose risk approaches
the risk of the best conditional density in the family of models considered (Theorems 4 and

6), in the sense that:

Re(P)< _inf {Rp<Pem) ¥ #} , (21)

where Rp denotes the distance of a conditional density with the true unknown density P in
a Kullback-Leibler sense (see equation (2.2)), and cy(m)/N should be as close as possible
as the minimax risk for the model m. The bound (2.1) is universal because it is obtained
without restrictive hypotheses on P, in particular P is not required to belong to any model
m. Yet if it does it can be approximated at the minimax rate in the model considered (with
a loss in the constant), as if this information was known a priori : in such a case we say the
estimator is adaptive.

There are many connections between our results and universal coding as defined by Davis-
son [30], which consists in building a probability on the set of strings of length N that approx-
imates simultaneously every probability of a predefined set as N increases, in the Kullback-
Leibler distance sense. The literature about universal codes is very rich, and many authors
have proposed solutions to problem (2.1) in that case with 1/N being replaced by log N (in-
cluding Rissanen and Langdon [69], Davisson [31]|, Ryabko [71|, Willems et al. [91], Feder and
Merhav [41] and Barron et al. [7]). The link with our concern in this paper is that the redun-
dancy criterion of universal coding is the sum of the expected distances we consider for string
sizes growing from 1 to N. In spite of this, results are difficult to adapt because a control of
the Cesaro mean of a sequence does not always lead to a control of the sequence itself : We

overcome this issue of universal prediction by using statistical aggregation methods.
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This paper is organized as follows. After setting up the statistical framework and present-
ing the family of Markov models in Section 2.2, we study two estimators for the parameters of
a single model in Section 2.3 and prove universal bounds on their risk. In Section 2.4 we build
a probability on the family of Markov models defined earlier, and propose two aggregation
methods in Sections 2.5 and 2.6 with universal bounds. Each of these two methods can be
used to aggregate each of both estimators studied for a given model, therefore resulting in four
possible global estimators. In Section 2.7, we show how using a data-dependent prior on the
models improves the estimators, and in Section 2.8 we propose an efficient implementation
in the spirit of the Context Tree Weighting algorithm ([91]). Finally Section 2.9 is devoted
to presenting some experimental results : The estimators studied in the paper are used to
represent texts written in natural language, and an unsupervised text clustering experiment

based on this representation is carried out.

The implementation of one of them is discussed in Section 2.8.

2.2 Definitions and framework

Let a € N* be an integer fixed throughout this paper. Consider an alphabet, A = {1,..,a}
with size | A| = a and whose elements are called letters. A string s is a finite concatenation
of letters which can be written as s = g1_;g2—;...qop with g ; € A for i =0,1,....01 — 1. [ is
called the length of the string s and written [(s). The empty string A has length [ (A) = 0.
The set of all strings is A* = [J;2,.A%. The concatenation of two strings s and s’ is written
ss'. We say that a string s = ¢1_;g2—;...qo is a suffiz of the string s’ = ¢|_;¢5_;...qp if I <1
and ¢_; = ¢’ , for i =0,...,] — 1. The empty string X is a suffix of all strings.

For any random variable X on a finite space X with probability distribution P we use
the notation P(z) = Pr{X = z}. The expectation of a measurable function f : X — R with
respect to P is denoted by Ep(gx)f(X) or Epf(X) if there is no ambiguity.

2.2.1 Statistical framework

Let D be an integer, fixed throughout this paper. We consider the measurable product space
(X x V,B1 ® By), where Y = A, X = AP, and B; and B, are the discrete sigma algebras on
X and Y. We address in this paper the issue of estimating the conditional distribution of a
letter Y € Y given a string X € X based on a series of observations. In order to model the
random nature of X and Y we suppose that a family of unknown probability distributions is

given :
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YNeN  PyeM:((@x), (BieB)®")

and we let {(X;,Y;) = Z;;i =1,..., N} be the canonical process.
One can for instance think of Py as P®, with P being a probability on (X x Y, B ® Bs),
if the observations are supposed to be independent and identically distributed. However we

will only use the weaker assumption that Py is exchangeable, i.e. that for any permutation o
of {1,... ,N} and any A € (B, ®82)N,

Py (Z) € A) = Py ((aZ){V € A) ,

where 07 is the exchanged process

(O'Z)Z: o(i)» ’L:]_,,N

An estimator Py for the conditional probability of Yy knowing Xy maps any observa-
tion (2!, zx) to a probability distribution Py(.|2Y !, zx) on Y. The performance of an

estimator is measured in terms of the Kullback-Leibler divergence D(.||.) as follows :

P,y (A 2n) = D (Pa( | A o)l [Ba (] 27 )

- Pn(yn |7 ' on)
= PN(yN|z{V 1 .’L‘N) log = — .
2 , Py(yn |2t zn)

yn€ey
The observation itself having a random nature the performance of the estimator is judged

according to its expected divergence, which we call the risk of the estimator Py -
5\ _ N-1
Rpy (PN) = Epy (rPN,PN (2, 7XN))

Py(yn|z) ' zN
= Y Pyl eg YOI en)
2N e(xxY)N

(2.2)

Py(yn |2z " zN)

This risk is the conditional Kullback-Leibler divergence (also called conditional relative
entropy, see e.g. [29, p. 22]) and plays a central role in universal coding and prediction (see

a survey in [58]).

2.2.2 Tree models

In order to estimate the conditional distribution of Yy let us consider a family of conditional

probability models. As in the statistical literature, a model m is a family of conditional
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distributions which are indexed by a parameter 8,, € ©,, C RU™  where d(m) is called the
dimension of the model m.

The models we consider are represented by trees. A tree S is by definition a non-empty
set of strings S C A* such that every suffiz of every string of S be also in S. In particular,
this implies that the empty string A belongs to §. Any tree can be represented graphically
as a graph whose vertices are the strings it is made of and whose edges link together every
string s € S with its suffix of size I(s) — 1. As an example, Figure 1 shows a tree § =
{\,a,ba,b,c,ac,bc} when A = {a,b,c}. The parent of a string s € § is its suffix of size
I(s) — 1, and its children are the set of strings s’ € S of length I(s’) = I(s) + 1 such that s is
a suffix of s’. Not that a tree might be incomplete, i.e. the number of children of any string

s € § might be different from 0 or a.

ba a

b A
ac

C
bc

Figure 1: Representation of the tree model {}, a, ba, b, ¢, ac, bc}

We denote by Cp the tree class of memory D, i.e. the set of trees S such that for any
se 8, l(s) <D.

For any tree § € Cp the suffix functional ss : X — S is the mapping which transforms
any string x € & into its longest suffix that is an element of S. If there is no ambiguity on

the tree considered, we will also write s instead of sg.

Example 1 The suffiz functional s associated with the tree represented in Figure 1 is such
that s(...bac) = ac and s(...bcc) = ¢

Any tree § € Cp can be considered as a conditional distribution model thanks to the

following construction :

Definition 1 Let S € Cp be a tree and ¥ be the (a—1)-dimensional simplez ¥ = {6 € [0,1] :
> yey 0y) = 1} For any 6 = (05)secs € %S let Psy denote the conditional probability density
on X x Y defined by:

de
V(@y) €XxY  Psy(ylz) Y 0,.0) -

The tree model S is by definition the set of conditional densities {Psg : 6 € nS1.
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As a result, a tree model S is a model with dimension d (S) = |S| x (a — 1).

2.3 Estimator for a given tree model

Let us first consider the case when a tree model S € Cp is given and one wants to use the ob-
servations va_l is order to estimate a parameter é(ZfV_l) € ¥ such that Rp, (Psyé(zf\[—l)>
be “small”. We propose two estimators for this problem: the first one is the well-known Laplace
estimator for which we generalize known universal bounds (Theorem 1), while the second one
is a new estimator for which we prove a better bound when the support of the conditional
distribution is smaller than the whole alphabet (Theorem 2). S being fixed we will use the

notation s(.) instead of sg(.) for the suffix functional associated with S.

Remark 1 The problem of parameter estimation for an i.i.d. source on a finite space is well
known in Information Theory. It seems the first method was considered in [73]; then the
problem of optimal estimation was considered in [53] and an asymptotically optimal method
was suggested. Recently new results about exact prediction were found in [83]. The results that
follow are non-asymptotic (as opposed to [53]) and remain true if the samples are not i.i.d.
but only drawn from an exchangeable distribution. FEven though the estimators we study are
not asymptotically minimaz (as opposed to [53]) the non-asymptotic upper bounds we obtain

are of the order of the minimax risk.

2.3.1 Laplace estimator

For any n € N let us introduce the random variables :

n

V(y,5) €Y XS pm(sy) =) 1(s(Xi) =sand Yi=y) ,
=1

n' (2.3)
VseS vn(s) =Y 1(s(X;) =s)
i=1
Hence v,(s) counts the number of samples Z; in Z1,... , Z, such that X; is mapped to s

by the suffix functional s(.), and p,(s,y) counts the number of samples in that subset such
that ¥; = y.

A node s € S is said to be wvisited by Z} if vy(s) > 0, and we denote by vy (S) the
random set of visited nodes, i.e. :

on(S) Y {seS :un(s) >0} .
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The Laplace estimator @ is defined by:

N —1(s,y) +1
Vs eSx Y, ) =EIEL

and results in an estimator which we call the Laplace estimator for the tree S defined by the

formula :

_ 1
Vo e (X x V)N, QF (yN \ IN;Z{V’I) = W\;;_(f((:gc)]\;)y)lvjz: : (2.4)

The following theorem gives an upper bound for the risk of this estimator :

Theorem 1 For any exchangeable distribution Py on (X X y)N and for any tree S € Cp the
risk of the Laplace estimator for the tree S satisfies :

. a—1
Rpy (Q5) < Juf By (Psg) + ——Bey [on(S)]

-1
N |S| °

a

< OlergsRPN (PS,G) +

Remark 2 The first inequality of Theorem 1 shows that the risk bound depends on the design
distribution, i.e. on the distribution of X{V, and therefore that the Laplace estimator can

adapt to it.

When S is reduced to a single node, this result is proven in [73] when Py is a product
distribution and in [24] when Py is exchangeable. Here we generalize the method of proof of
the latter for a general tree model S (see also [16] for a similar result in the case of decision
trees).

Proof of Theorem 1:

First observe that for any s € S,

vn (s(Xnw)) = Z 1(s (Xi) = s(Xn))
= 371 (s (X) = s(Xn)) + 1

and a similar computation shows that for any (s,y) € S x Y,

pN ($(XN),YN) = pn-1(s(Xn), YN)) +1 .
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As a result the Laplace estimator (2.4) can be rewritten in terms of py and vy as follows:

vzl e (X x )N, Qs (yN|='ENa {V 1) = V;g((if)];)_;ZN_) 1

Observe also that the maximum likelihood estimator for Hf\i 1 Pso(Yi| X;) is:

és(y) = :uN(Say)/VN(S) )

with corresponding log-likelihood :

SHPIOgHP59Y|X) Y s,y log MY
oexs seS  yey vn(s)

vn(s)>0
Using the fact that Py is exchangeable to get the first equality and the fact that py and

vy are invariant under permutations of {1,... , N} to get the second, we can now write :

1
QY (YNIXN;ZfV_l)

EPN log

N
1
=—ZEp, > logQf (Y| Xi; Z,k #i,1 <k < N)

N =1
pn(s,y)
EPNZZMNSyIOg ()+a_1
seS yey
a—1
—EPN 1nf——log Psg Y|X)—|—— EPNVn()log 1+
Vn(s)
=1 SES Vn
vn(s)>0
1 a—1
< inf EPN EPN ‘/UN(S)| :

lo +
pexs ®Pso(Yn | Xn) N

Theorem 1 follows by adding Ep, log Py (YN | Xn; va _1> to both sides of the inequality
and observing that vy (S) C S implies |vn (S)| < |S].00

2.3.2 Adaptive Laplace estimator

In this Section we suppose that Py is a product measure P®V with P € Mﬁ_(X x V), i.e
Z1,...,2ZN are supposed to be i.i.d. with common distribution P.

Suppose that for every s € S the support of the conditional distribution P (Y |s(X) = s)
is known to be a subset A; C A of size a(s) = |As], i.e. :



2.3. ESTIMATOR FOR A GIVEN TREE MODEL 35

P(y|z) > 0if y € Ay(y),
P(y|z) = 0 otherwise.

V(z,y) € X x ),

In that case one could replace the Laplace estimator for the tree § by the following

estimator which takes into account the information about the supports :

pn-1(s(zn),yn) +1
Qs (yN‘xN;Z{V_l) = { vn-1(s(zN)) +a(s)
0 otherwise.

if yn € Ag(z,)

Using a computation similar to the one in the proof of Theorem 1 it is straightforward to

show that this estimator satisfies :

> (as) = 1)

= . S
R (QX) < inf, Ry (Psa) + 55— 25)

which is a smaller upper bound than the one given in Theorem 1 if a(s) < a for some s € S.
However this estimator requires the prior knowledge of the supports {A;}scs. In case these

supports are not known it is still possible to observe the size of the empirical supports given
by :

V(n,s) e Nx S, ap(s) = Zl(,un(s,y) >0) .
yeA

Using these observations we define the adaptive Laplace estimator for the tree S by the
formula, Vz¥ € (X x V)V :

v (s(on), ) + 2= EEN)

- B a £ 0
QF <9N|$N§Z{V 1) = i/N—l (s@n),un) +an_1 (s(zny)) =N 1(s(zn)) >0,
— otherwise .
a

The effect of this modification to the Laplace estimator is to “boost” the estimated prob-

abilities of letters which have already been observed. It is easy to check that :

Vi Loy e (X x V)N xx, > QY (e ) =1,
yey

which ensures that Qév is an admissible conditional probability density. The risk of this

estimator can be upper bounded as follows :



36 CHAPTER 2. ADAPTIVE CONTEXT TREES

Theorem 2 For any probability distribution P on X x)Y and Py = P®N | for any incomplete
tree model S € Cp,

> n(s)

A : €S
Ry (QF) < jnf By (Pog) + =5 —

with

Vs e S, yn(s) = a(s) ( —@) +a(s)—1+4+o0(1) .

a

Remark 3 Up to the vanishing term o(1) the upper bound provided in Theorem 2 is smaller
than the upper bound provided by Theorem 1 for the Laplace estimator by a factor :

% (a—l—a(s)+1—a(s) (1—?)) =%Z(a_aﬂ :

seS

which is always positive. Therefore the asymptotic rate of convergence to zero is smaller for

the adaptive Laplace estimator than for the Laplace estimator if a(s) < a for some s.
However by (2.5) the corresponding rate of convergence for the risk of the Laplace estimator

QY in the case {As}ses is known is Y . g(a(s)—1)/N, which is smaller than the upper bound
of Theorem 2 by a factor :

This factor can be considered as the “cost” of not knowing {As}ses.

Proof of theorem 2:
First observe that if pun(s(Xn),Yn) = 1 then for all 1 < N, s(X;) # s(Xn) or Y; # Y.
As aresult, ay (s(Xn)) =an—1 (s(Xn)) + 1. On the other hand if ux(s(Xn),Yn) > 1 then

an (s(Xn)) = an-1(s(Xn)). Therefore we can compute :

1
EPN log ~
QN (vw | Xn; 20"
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N
1 ~
= —=Ep, Y 1ogQf (Y| Xi; Zp, k #i,1 <k < N)

N
=1
1 pn(s,y) — 1+ 2= 1
= __EPN Z ZHN(Say) log < - _EPN Z log_
N prer e vn(s) —1+an—1(s) N poere a
vy (s)>1 vy (s)=1

1 an (s)

NPy > ( > HN(S,y)IOgHN(S’y)_lJFT

= = vn(s) +an(s) —1
vN()>1  pun(s,y)>2

an(s)—1 1 1
I 4 ——E log —
> B Un() tan(s) —2) N Pv D, logg
yey SES
NN(Say):l IJN(S):l

1 1
< infEp log— >+ — S (A;+ By + Cs + Ds + E)
= gexns V%8 Peg (Y | Xn) NSEZS( s+ Byt Gyt Dat i)

with :

(
S,
As=Epy Y, pn(sy)log — an(s)
yey HN(Say)_1+T
N (5,y)>2 (s) (s) =1
UN(S) +an(s) —
By=Epy 3 nn(sy)log= 5 ’
vn(s)
yey
b (5:9)>2
] CS = EPN l(l/N(S) > ]-) Z logL ’
yey aN(s) -1
“N(Say)zl

+ -2
D, = EPN l(VN(S) > 1) Z log VN(S) . CL(];])(S)
yey N
un(sy)=1

| Es = Epy (1(vn(s) =1)loga) .

For any s € S and y € Y let P(s) = Pr{s(X) = s} and 6;(y) = Pr{Y =y|s(X) = z}.
Then vy (s) and py(s,y) are binomial variables B(N, P(s)) and B (N, P(s)0s(y)). Let € > 0
be defined by :

= min min P(s)0 .
e= min min P(s)0.()
P(s)>0
Then for any s € S such that P(s) > 0, the expectation of the empirical support size
satisfies :
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a(s)

a(s) =Y k.Pr{an(s) = k}
k=0

< a(s)Pr{an(s) < a(s)}

afs) (Z Pr{un(s,y) = 0})

yEAs

<a(s) Y (11—

yEAs

< a(s)?e N .

On the other hand if py(s,y) > 2 then (uy(s,y) —1)7" < 3 (un(s,y) +1)"" and there-
fore, for any s € § such that P(s) > 0 we have :

1
EPN Z 71

P/N(Sa y) -

yey
N (5,9)>2

1
S3Bpy ) T
= mn(sy)+1

N (5,y)>2
1

< 3y§s Ep, 1+ B(N,P(S)Hs(y))

1
<3 2 WA OPORG)

< 3a(s) ’
~— Ne

where we used the fact (see e.g. [34, p. 587]) that for a binomial B(n,p), E1/(1+ B(n,p)) <

1/((n + 1)p).

We can now upper bound the five terms for any s € S such that P(s) > 0. For A5 we

write :
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z 1— an(s)
A, <Ep v (s,9) e
" yey ,UN(S,y) -1+ Na( )
BN (s,y)>2
2
1— an(s)
<Bp, Y 1oy ( )a o
vey a pn(s,y) — 1+ ==
NN(Svy)ZQ
a(s) a(s) 1
< _ 2 2 _ - -
<a(s) (1= 22 + % a(s) — Bryan(s) + By > e
n (s,y)>2

< a(s) (1—@) +%3)36_N6+37v—(:) )

where (2.6) and (2.7) are used to get the last inequality. The terms B; and D; can be taken
together :

14
Bs+ D, < EPN (I(VN(S) > 1) Z ,uN(Say) log il
yeAs

<Ep, (1<uN<s) > 1) (s) log (1 * ag@)l)

<a(s)—1.

Finally, one can observe that if uy(s,y) =1 and vy (s) > 2 then ay(s) > 2. This provides

an upper bound for the integrand in C and therefore :

Cs+Es <Epy [1(un(s)>1) Y loga+1(vn(s)=1)loga

yey
b (s,y)=1

< log(a) x Z Pri{un(s,y) = 1} + Pr{vn(s) = 1}\
yEAs

< Nlog(a) (1= P(s)V 1+ Y (1 - P(s)0s(y)" "
yEA,

< Nlog(a) (a(s) + 1) e=V=De

We can now sum up the upper bounds obtained for Ag, Bs, Cs, Ds and E; to get :
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Rp, (stv) < inf Rpy (Psg) + % Z [a(S) —1+a(s) (1 — T) + CN(S)] ;

- gexs SES
P(s)>0
with
3
(n(s) = a(s)” —ne + ?’?vﬁ + Nlog(a) (a(s) + 1) e N=De |
a €

This finishes the proof of Theorem 2. [

2.4 Probability on the model space

The goal in the rest of this paper is to build estimators which satisfy risk bounds like (2.1). For
this purpose we propose to use aggregation methods introduced by Catoni (the progressive
mixture estimator in [24]| and the Gibbs estimator in [22]), both of which require a prior
probability distribution to be given on the model set. The idea of setting a probability on a
model space is well known in source coding and prediction : besides underlying any Bayesian
approach it was suggested in [71] and [72] to obtain non-asymptotic risk bounds and later
this idea was used in many papers (see for example [91] and [92]).

If 7 is a probability distribution on a model space M then log 1/7(m) is called model risk.
The choice of 7 is arbitrary, but has an influence on the performance of the aggregated estima-
tor. Optimizing this choice is impossible without further assumptions on the true probability
distribution P and the approximation properties of the family of models considered.

In addition to performance the possibility of a fast implementation should be regarded as
a guideline for the choice of a prior distribution 7. For instance the prior model probability
distribution considered in the context tree weighting algorithm ([91]) leads to a remarkably
efficient implementation, which should be regarded as a fundamental advantage of the algo-
rithm.

Generalizing the idea of the context tree weighting method, let us define a probability

distribution 7wp on Cp, the tree class of memory D, as follows :

vSeclp, mp(S)=d3,

where ¢p € R satisfies :

Soeii=1. (2.8)

SeCp
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The model risk is then linear with respect to the size of the model, because :

1
VS € Cp, log = |S|log — . (2.9)
¢D

1
™(S)

The prior wp will be used in the following sections to build convex combinations of different
models. We will obtain particular upper bounds for the risks with this arbitrary choice
(Theorems 4 and 6), but the reader should be aware that any different choice of prior is
possible and would lead to different upper bounds. We propose to chose a prior which results
in a model risk proportional to |S| because the “parameter risk”, i.e. the risk of an estimator
for the model S like the Laplace estimator, is also linear in |S| (Theorem 1).

The following lemma provides a useful upper bound on the model risk independent of D :

Lemma 2 The family of probabilities {mp}pen satisfies :

1
VD € N,VS € Cp, log —— < |S] (log(a) + 1)
mp(S5)

Proof of Lemma 2:

By (2.8) it is clear that (c¢p)pen is a decreasing function of D, because Cp C Cpyi
for any D € N. Therefore this non-negative series has a limit ¢ = limp_, o, cp, such that
VD e N,c <cp.

For any (D,z) € N x R let :

up(z) = Z z!S .

SeCp
The function up(z) is increasing with z and D, and by definition up(cp) = 1 for any
D € N. Therefore up(c) <1 for any D € N, and :

lim up(c) <1 . (2.10)

D—o0

By decomposing any tree S € Cp as the root node and a (eventually empty) subtrees
(S1,...,84) € (Cp—1 U{0})* one gets the following inductive relation:

up(z) = Z z'S

SeCp

_ Z $1+|SIH—+|S¢1|
(S1,e-,84)E(Cp_1U{B})"

=z (up_1(z) +1)* .
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If we introduce the function f;(y) = z(1 + y)® then this can be rewritten :

up(z) = fz (up-1(z)) -

It is well known that for up(z) to stay bounded when D tends to infinity it is necessary
that the equation f,(y) = y have a solution y. By (2.10) this implies that f.(y) — y must be
equal to zero for some y.

If we now study the function g;(y) = fz(y) — y its derivative is :

ge(y) =az(1+y)* " -1,

therefore g, is minimum for y* such that g/ (y*) =0, i.e. :

1

Yy = (az)T-e —1 .
As a result the minimum value of g, is :

-1
a (az) =

T )=1-—
9z(y") "

The necessary condition that f.(y) —y = 0 for some y is equivalent to g.(y*) <0, i.e. :
(a o 1)&—1

c<—1
<

which implies :

1
log — < alog(a) — (a — 1) log(a — 1)
c

< log(a) + (a — 1) log —*—

<log(a) +1 .

Lemma 2 now follows from this inequality, the fact that ¢ < ¢p and (2.9). O

2.5 Aggregation using a progressive mixture estimator

In Section 2.3 we presented two estimators for the parameters of every given model S : the
Laplace estimator (s and the adaptive Laplace estimator Qs. In this Section we show how to
aggregate the Laplace (resp. adaptive Laplace) estimators for various &, i.e. build a convex

combination of the {Qs}sec, (resp. {Qg}gecD), by using the so-called progressive mizture
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estimator, introduced by Catoni in [24]. Instead of selecting one model S and the correspond-
ing estimator Qg (resp. QS) as in classical model selection procedures, this estimator is a
mixture of all the Laplace (resp. adaptive Laplace) estimators.

Let us first describe the construction of the progressive mixture estimator which aggregates
the Laplace estimators defined in section 2.3 and which we denote by QN (Yy | Xn; ZN 1) .

An integer K € [1,N — 1] is first chosen and the observations ZN ! are split into an
estimation set Z{ and a validation set Zﬁ_i__ll

For each model § € Cp the estimation set is mapped by the Laplace estimator to a
conditional distribution Q5 ™ (Y | X) defined by :

vSeclp, QETNY|X)=Q5" (Y|X;Z)) , (2.11)

where the latter is defined by (2.4).
For any n € [0, N — K —1] let now Q(n) (Y| X) be the conditional distribution obtained as
a Bayesian mixture of the primary estimators {QK Y | X)}secp with the prior distribution

m on Cp and the observations Z II((I{L, Le.:

K+n
> (H Q“lYiXi)) QET(Y|X)

n Sec K
QMY | X) = =2 —
S ( 0 QKHY\XZ-))
SeCp =K+1

The progressive mixture estimator QL is then a Cesaro mean of these Bayesian estimators

trained on subsamples of growing sizes, i.e :

1 N—-K-1
L Y QW(Yn|Xy) .
n=0

QY (Y| Xn;2) 1) = N_&K

The idea of building a progressive estimator has been proposed independently by Barron

([5], [8]) and Catoni ([24]) who proved the following property :

Theorem 3 (Catoni, [24])

. 1
Rpy (QF) < Slench {RPN (QK“) N KIOg (5)} : (2.12)

The construction of the progressive mixture estimator ny which aggregates the adaptive
Laplace estimators is exactly the same as the construction of QX except that each @ should
be replaced by Q.

We can now evaluate the risks of @Y and ny :
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Theorem 4 Let QY (resp fo ) denote the progressive mizture estimator based on the family
of Laplace estimators {Q§+1}S€CD (resp. adaptive Laplace estimators {QgH}SeCD) and on

the prior w defined in Section 2.4, with the size of the training being set to :

bl

K — [\/mN— log(a) + 1
va—1+ y/log(a) +1

where [.] denotes greatest integer.

For any exchangeable distribution Py on (X x y)N, the risk of QN satisfies :

. S|Cn
Ny < f P 15]Cn
RPN (Qﬂ' ) = 8661131?0625 {RPN ( 8,0) + N +1 ;

with :

Cn = (\/1+log(a) +\/a—1)2 (l+ﬁ>

Let yg 41 be defined in as in Theorem 2. The risk of QFN satisfies :

Rpy (QY) < inf {RPN (Ps) +

SeCp,fexlsl

ESES 5N(S) }
N+1 ’

with :

() = (Vi@ + Visg@ +1) /29 (amT - )

a—1
—I—% (\/a—l—i-\/log(a)—i-l)2 :

Remark 4 The definition of K shows that the larger the alphabet, the longer it takes to train
the Laplace estimators compared with the time it takes to aggregate them with the progressive
mizture estimator (i.e. K/N increases with a, with limit 1 as a tends to infinity). For a large
a the risk bound associated with any model S is very close to |S|(a — 1)/N, which is the risk

of the Laplace estimator for this model.

Remark 5 The term dx(s) is the sum of three terms. The first one is the term one would
expect if Yk41(s) was known a priori so that the size of the training set K could be better
adjusted. The second one is the loss due to the fact that yix11(s) is not known a priori and
we decided to take for K the value corresponding to the best split for QY instead of Qf;] The

third term vanishes to zero and is the loss due to the fact that K has to be an integer.
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Proof of theorem J:
Using Theorem 1, Theorem 3 and Lemma 2 we can write :

) log(a) +1
Rp, (Qy) < Slench {RPN ( §+1> + \S|7}

N —-K

< Bew (Pse) +1S
_Secg,laegs{ Py (Ps,) \|<

a—1 +log(a)+1
K+1 N-K '

The function

_a—1 log(a)+1
ml—)f(:v)—£+1+ N-—=z

is minimum on (0, N) at the point :

. Va—1N —/log(a)+1 .

e Vva—1+ y/log(a) +1

K must be an integer so a good candidate to ensure a risk as small as possible for QY is

K = [z*] for which we can compute :

a—1 log(a)+1

FK) < T* + N —x*
. (a—1) (\/a — 1+ /log(a) + 1) (log(a) +1) (\/a — 1+ y/log(a) + 1)
- a—1N — /log(a) + 1 * log(a) + 1(N +1)
(\/a—l—l— \/log(a)—i-1>2 1
< 14+ —
N+1 N — log(a)+1

a—1
The upper bound concerning the Laplace estimator in Theorem 4 follows by observing

that a > 2 and therefore :

MS 1+1og(2) <2 .
a_

For the second part of the theorem concerning the aggregation of adaptive Laplace esti-

mators we follow the same computation except that by Theorem 2 we get :

AN < inf R P Z (K ,
Py ( ;7’) o SECID,OEES { Pu (Fs) sesg ( )}
where g5 is defined by :

~ Yk41(s) | log(a) +1
9s(z) = z+1 + N—-z
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We now just need an upper bound for gs(K) where K is chosen as in Theorem 4, which

is given by :

0u(K) < Yic+1(8) n log(a) +1

x* N —z*
- Yr+1(8) <\/a — 1+ +/log(a) + 1) (log(a) + 1) (\/a — 1+ +/log(a) + 1>
- Va — N—\/log a)+1 " log(a) + 1(N +1)
\/a — 1+ /log(a)

ven(s) (. Va—T+/logl@) 11 o
Va—1 <1+N\/a— —\/log(a)+1> * vig(a) +1
1

N1 {(\/7K+1 )+ Viogla +1)2+ kygiz(a#(\/Cl—l—\/71(+1(5)>2

N+1

<

% (\/a — 14 /log(a) + 1)2} O

2.6 Aggregation using a Gibbs estimator

In this Section we present a second aggregation method based on the Gibbs estimator, intro-
duced by Catoni in [22]. Let us first describe this estimator Gfx (YN | Yy, ZN=1) to aggregate
Laplace estimators.

As for the progressive mixture estimator presented in Section 2.5 the observations ZfV -1
are split into two set Z& and Z% Kl ! where K is an integer in [1, N — 1], and the observation
set ZX is used to define the set of primary estimators {Q5 ™ (Y | X)}sec,, using the Laplace
estimators as in (2.11).

The Gibbs estimator at inverse temperature # € Ry using the prior 7 on Cp is now the

following conditional distribution :

B
> ( H QT (v, |Xn)> QYT (Yn | Xn)

) def SeCp n=K+1

> ( H Q5T (Ya \Xn)y

SeCp n=K+1

G (Y| X 2! (2.13)

This definition shows that the Gibbs estimator can be considered as a “thermalized” version
of both the Bayesian (8 = 1) and the maximum likelihood (8 = +o00) estimators. Catoni
studied in [22] this estimator in the high temperature region 8 < 1 which is equivalent to a

deliberate underestimation of the sample size : to compute the Gibbs estimator, the empirical
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distribution of N — K — 1 observations is plugged into the Bayes estimator for a sample of
size B(N — K — 1). The reason to consider high temperatures is that the estimator gains
stability with respect to the empirical process when [ decreases (at the limit, it is constant
when 8 = 0). This property is used by Catoni to prove a general upper bound for its risk
in the spirit of (2.1), which takes the following form in the particular case when the primary

estimators are log-bounded :

Theorem 5 (Catoni, [22]) Let x > 0 such that :

VS € CD,V(zf(,z) € (X x y)K+1, —x < logQ§+1(y|x,z1K) <0 .

If B satisfies :

et (i ()
x—1 X X

then the Gibbs estimator ny’ﬂ defined by (2.13) satisfies :

. 1 1
Rey (620 < ot {Ro (Q57) 4 g hoe g f - @9

The definition of the Gibbs estimator éfx 3 (YN | Xn; va _1) to aggregate adaptive Laplace

estimators follows exactly the same construction by replacing every @ by Q.

We can now evaluate the risk of Gf;] 3 and C:‘fy K

Theorem 6 Let

xn =log (N +a),
xn = log (N + a) + log(a) .

Let

1 lo lo
By = <\/1_(XN_1) (2_ gXN) ng_1>
xnv —1 XN XN
v/2loglog N

NSt logN ’

and let 5]\; be deduced from xn as By is deduced from xn.
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Let GﬂN,ﬁ (resp éfxﬁ) denote the Gibbs estimator at inverse temperature By (resp. By)
based on the family of Laplace estimators {Q§+1}SECD (resp. adaptive Laplace estimators
{Qg+1}SECD) and on the prior w defined in Section 2.4, with the size of the training being set

to :

Va—IN — /3" (log(a) + 1)
Va—1+ \/5;,1 (log(a) + 1)

where [.| denotes greatest integer (resp. to K defined like K with By replaced by BN)
For any exchangeable distribution Py on (X x y)N the risk of Gﬁ,ﬂ satisfies :,

K =

7

Rpy (GY5) < inf {RPN (Psy) +

S| C’N}
T SeCp.,hexSs ’

N+1

with :

Cy = (\/(1 +log(a)) By" + VaTl)Z (1 + ﬁ)

Let yg 41 be defined in as in Theorem 2. The risk of C:',rN’ﬁ satisfies :

A
By (G”ﬁ) - SGcg,lgezS {RPN (Ps.0) +

> ses 0N () }
N+1 ’

with :

2 n—1
o (o) = (V) + y/og(a) + 1) +\/ U@ + DA (va=i- Varn®)’

7(s) 1\’
AP v v} (VG —1+4 \/(log(a) +1) 6N1> :

Remark 6 Asymptotically, the upper bound on the risks of the Gibbs estimators provided
by Theorem 6 appear to be worse than the risks of the corresponding progressive mizture
estimators given by Theorem 4 because of the factor (By)~'. This is due to the fact that
the inverse temperature has to be taken smaller and smaller as N increases in order to prove
that (2.14) holds. However the conditions imposed on [ which involve a uniform bound on
the likelihood of the primary estimators might very conservative in the particular problem
we consider. Therefore larger values of B might also ensure the validity of (2.14), and the
actual performance of this estimator is probably better than the one proven in Theorem 6 (it

is reasonable to think from the computations in [22] that B = 1/2 will work in many cases).
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Remark 7 FEven though the risk of the Gibbs estimator is worse than the risk of the progres-
sive mizture estimator one might prefer to implement the former because it only involves the
computation of one mizrture, while the latter one involves the computation of N — K Bayesian

mixtures which are then averaged.

Proof of theorem 6:
The family of Laplace estimators {Qé{ 1 sec,, is uniformly bounded by :

V2K e (& x )KL VS e Cp,

pr(ss(Tr+1),yk) +1
vi(ss(zx+1)) +a

> —log (K +1+a)

0> log Q5™ (yks1| K152 ) = log

> —log (N +a) .

Similarly the family of adaptive Laplace estimator {Q? 1 secp is uniformly bounded by :

V2Kt e (X x )KL VS € Cp,

0> log Q5™ (yrt1|wK11;21 ) > —log (N + a) — log(a) .

We can therefore apply Theorem 5 with xn (resp. xn) and Gy (resp. ﬂNN) as defined in
Theorem 6 to get :

Rp, (G7r ﬂ) < 1nf {RPN (QK+1)

and

Rp, (G ’ﬂ> < Jof {RPN (QK+1) ﬂN(Nl_ K) 1Og7r(15')} ’

Using these two inequalities instead of (2.12) the proof of Theorem 6 now follows exactly
the proof of Theorem 4. [

2.7 Data-dependent prior on the trees

Theorem 1 provides two bounds for the risk of the Laplace estimator on a given tree : the first
one depends on the design distribution, i.e. the distribution of X{, and reflects the property

of adaptiveness of the estimator, while the second one does not depend on the design law,
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and is therefore weaker. The aggregation of these estimators described in Sect. 2.5 and 2.6
are also distribution-independent because the model risk is chosen a-priori.

In this section we present a modification which can be applied to any of the four estimators
studied in Sect. 2.5 and 2.6. It consists in replacing the prior distribution = on the set of
trees Cp by a data-dependent prior T to aggregate the primary estimators in order to get a
better upper bound on the rigk, which depends on the design distribution. This modification
should be especially useful when the design distribution Py (X?V) is concentrated on a small
subspace of AP, which is for instance the case in natural language modelling (see Sect. 2.9).

For clarity reasons we just show the construction of the estimator QY which is the modifi-
cation of QX , the progressive mixture estimator which aggregates Laplace primary estimators
and is defined in Sect. 2.5. Let us therefore formally define the density QY (yn |2IV;y) 1)
for any 2V € (X x Y)N.

Let 7 (z) denote the tree (in the sense of Sect. 2.2.2) whose vertices are the suffixes of

the z;’s, i.e. :

T("E{V) = {(ml)gl : (ial) € [LN] X [O’D]} s

and let 7 (z]) be the graph obtained by removing from 7 (z}V) the vertices with only one child
and merging the two edges starting from a removed node (i.e. the edge toward its parent and
the edge toward its single child). A subtree of the graph T (z)) is by definition any connex

subgraph which contains the root A as a vertex.

Example 2 Figure 2(a) shows the graph T (z)) when D = 4 and the observation is 3 =

(caba,aacc,chbec). In that case the set of vertices of T (z3) is {\,caba,cc,aacc,cbec}. Two
possible subtrees of T (x3) are shown on the right-hand parts of Figures 2(b) and 2(c), with

respective sets of vertices {\,caba,cc} and {,cc,cbec}.

Let C(z)V) be the set of subtrees of T (z)). For any S € C(z!V) the suffix functional sg is
defined in the same way as when S is a classical tree (see Sect. 2.2.2). For any 0 € %5 let

Ps 5 denote the conditional probability distribution :
V(*’an) €EX XD, P"g(y|$) 2935(1)(y) :

The counters (vn(s)),cs and (4n(5,Y)) (s y)esxy are defined as before by (2.3). Therefore
the distribution Q% (yn | Zn, 271) can also be defined as before by (2.4).
Let @(,ny be the distribution on C(xV) defined by :

VSeCEl), () =,
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(a) T(23) for Example
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(b) A tree S, squares on its visited
nodes, and corresponding subtree of
T (x3) (see Example 3)

IS
cc
cbcce

(c) Same as Figure 2(b) with a different tree S (see Example
3)
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where ¢ is the real number which satisfies :

Y oot

3eC(@h)
Using this data-dependent prior Tz instead of the data-independent prior 7 in the

definition of QY (see Sect. 2.6) we finally obtain a modified estimator QL.

For any tree S in Cp recall that vx(S) denotes the set of visited nodes of S, i.e. :

on(S) ={s €S : un(s) >0} ,

and let v(S) be the smallest subtree S of T (z1') such that for any s € vn(S), thereisa s’ € S

such that s is a suffix of s'.

Example 3 As in Ezample 2 suppose that D = 4, N = 3 and 3 = (caba,aacc,cbec). The
left-hand parts of Figures 2(b) and 2(c) show two trees S and S' in Cp. The squares around
nodes on S and §' indicate the nodes which belong to vs(S) and v3(S'). The right-hand parts

of the same Figures show the corresponding v(S) and v(S’)
We can now give an upper bound on the risk of the estimator QL :

Theorem 7 Let the size of the training set be the same as in Theorem 4. For any exchangeable

distribution Py on (X X y)N, the estimator QY using the data-dependent prior T satisfies :

R Ny < inf Rp., (P, E
Py (Q”)—sec;éez&{ Py (Psy) + PN(

@D Ncivl} ’

with

Cn = (v/1+logla) + Va~— 1)2 (1 + ﬁ)

v(S)

7 is therefore smaller than the corresponding upper bound in Theorem 4. The difference can

Remark 8 For any S € Cp,

is always smaller than |S|. The upper bound in Theorem

be large in cases when PN(XfV) is concentrated on a small subset of AP, because in that case
T(XN) is a small subtree of UZ-ZO A? with high probability.

Remark 9 The Laplace estimator for a given tree requires no modification because its risk is
already bounded in terms of the number of visited nodes (see Theorem 1). Therefore only the

prior w needs to be modified to become data-dependent.
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Remark 10 Every tree S € Cp splits the data =V into |v(S)| = |v(v(S))| clusters. The

number of different separation of the data T by trees in Cp is therefore :
{v(v(9)) : s e cD}‘ .

which is equal to |C(z)| up to the number of trees with unvisited nodes. If we had chosen

for @ a uniform prior on C(zY) the model risk would have been of the order of Elog N'(X{Y).

N(z1') =

The idea of computing an upper bound involving such a model risk instead of a model risk of
order log|Cp| (resulting from a uniform prior) is classical in statistical learning theory (see
[86]), where the numbers N'(zY) and Elog(N (X)) are respectively known as the shatter

coefficient and the annealed entropy.

Proof of Theorem 7:

The random tree 7 (X?V) is invariant under permutation of the indices [1, N]. As a result,
for any such tree T, the distribution Py (va | T(XN) = 7_') is exchangeable. On the event
{T(X¥) = T?} the prior 7 is independent of the data and therefore Theorem 4 can be applied.
As a result the following holds for any S € C(X{¥) and 0 € xS

1
1 -, Cy
< EPN(dZ{VH_‘(X{V):T) log P 3 (Y | Xn) + |.S|NJr T (2.15)

where Cp is defined in Theorem 7.

For any S € CP and 6 € £ let 6 € £?(5) be the parameter defined by :

Vs € v(S), 0s =06y

where s’ is the longest visited suffix of s in §. For any 4 € [1, N] this definition leads to :

Pv(s),é(yi | J"Z) = ésm(ﬂh)(yz)
= 932 (yz) )
where s/ is the longest visited suffix of s@(wz) in S. But s@(wz) is by definition a suffix
of z; thus s, must also be a suffix of z;. The largest suffix of z; in S is ss(z;), which is by

definition a suffix of sm(xz) This shows that s, = ss(z;), and therefore :

Vi € [1,N], Pso(yi | wi) = Pygy g(yi| i) -

The parameter § only depends on Z{¥ through 7 and therefore we can integrate this

equality to get :
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1
EPN(dZ{V | T(XM)=T) log Pso(Yn | Xn)
1

= B (21 700=T) %8 B TR

From (2.15) we deduce that for any 7, S and 6 the following holds :

1
Pa (2 1TO=T) 18 N (3 Xy 2T

E

1 Cn
< Bpy(an 170)=7) 198 B s 3y TIPS N

Taking the expectation of this inequality with respect to Py yields the upper bound in
Theorem 7. O

2.8 Implementation for the aggregation using a Gibbs estima-

tor

In this section we show how the estimator GfXﬁ(YN | Xn; ZN~1) using the Gibbs estimator to
aggregate Laplace estimators (see Sect. 2.6) can be computed using a recursive algorithm in
the spirit of the Context Tree Weighting algorithm ([91]). The construction we present can
be adapted to the other estimators studied in this paper.

2.8.1 Exact computation

Let Tp = U2, A" be the contest tree of depth D, and for every 2V € (X x Y)V let the
following counters be attached to the nodes of the context tree, i.e. ¥(s,y) € Tp x Y :

(

K
pr(s,y) = Z 1 (s is a suffix of z; and y; = y)

=1
N-1

pv(s,y) = Z 1 (s is a suffix of z; and y; = ) ,
1 i=K+1

pi(s,y) =1(sis asuffix of zy and yy =vy) ,

vr(s) =Y urls,) -

\ yey

The subscripts 7" and V refer to the training set and the validation set respectively. Using
these counters we can define the following functions attached to each node s € Tp, and defined
for any subset N'C )Y and £ € {0,1} :
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S s g) +1 (uvsy Zuvzsy>+§u*(s,y)

N
&)y def N '
s) = ¢p H :
sy vr(s) — Z vr(is) + a
ieEN

For any S € Cp and s € S let :
Ns(s)={ie A :iseS} .

Let now 7€) be defined recursively on 7p for ¢ = {0,1} by the formula :

YO (s) = w (5) ifi(s) =D ,
O = T uf® [[ 196 - (2.16)
= N v\ (is)  otherwise .

NCY IE€Y\WN
The following Lemma shows that 7&)(s) can be seen as a tensorization of a sum over all

subtrees with root s :

Lemma 3

V(s,8) € To x{0,1},  AO(s)= > (Hsz ) ,

SeCp_qg \s'eS

and the following result gives an effective way of computing the estimator Gﬁf ﬂ(YN | Xn; va E

Proposition 1

M
N N N CoN-1y (A
Vzi € (X x V)7, Grplyn|zn;2) ) = YO0
Proof of Lemma 3: We prove the result by backward induction on I(s). The property
is obvious for I(s) = D by definition of 7€) (s) in that case. Suppose it is true for any s’ € Tp

such that I(s") = d+ 1, and let a string s € Tp of length [(s) = d. Then we get :

=Y W [ 1©as)

NCY ieY\W

= > wd ]I [ > (HWNs(s')(S'iS))]

NC.'V Zey\N SeCp_q_1 s'eS

> (Hsz<sf><s's>> =

SeCp_4 \s'cS
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Proof of Proposition 1:

It is easy to check the following equality for any S € Cp, 2 € (X x Y)V and ¢ € {0,1},

using the definition of 7(S) and of the Laplace estimator Q4 ** :

§) TI Q5 (o0 #59PQE g [ o 9 ] Wi (g (5) -

i=K+1 seES

As a result the estimator Gf:] s can be expressed as follows :

> (M)

VAl e (X x )N, G ylyn a2 = 25 S
3 (Hw“” <s>>
Ns(s)
SeCp \seS

Proposition 1 is a direct consequence of this equality and Lemma 3. [

2.8.2 Approximation by model selection

The implementation suggested by Prop. 1 using the functionals v involves the computation
of a sum over N’ C A at every node (see (2.16)). The number of such subsets A/ being equal
to 2% the actual computation of this sum might be unfeasible is a is too large.

As an alternative one can observe that the estimator GN 8 is a mixture of Laplace estima-

tors :

G;]rv,ﬁ: Z ( )QK+1 )

SeCp
and that this mixture should usually be unimodal in the space of conditional distributions,
by construction of the Gibbs estimator. As a result an approximation of GN g is the Laplace

estimator corresponding to the tree with highest posterior probability, i.e. :
t. _
Gy (Y | Xv; 211 = QK D o) (Y | Xv; 2{1)
with

Sz 1) = arg max p(S)

SeCp
= arg max 7T H QK+1 yz | T, 21 )ﬁ (2 17)
SeCp i=K+1 .

:argmax{|8| 8D | H Q5 (yi | i, 21 )}

S€Cp i=K+1
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This formulation shows that Gg::sﬂt') is obtained by a penalized mazimum likelihood selection
procedure, where the penalization for the log-likelihood of a model S is k = (logcp)/B per
node.
The implementation of this model selection procedure can follow the spirit of the imple-

mentation of the mixture :
e For any subset N € ) and s € Tp let :

pur(s,y) — Y ur(is,y) + 1

wa(s) S kv > (MV(Say) -3 N‘V(isay)) log r(s) %w(z’s) p

yey ieN
ieN
e Let 7 be recursively defined on Tp by :
7(s) = o) ifi(s) = D |

(s) = max Ej(f}) + | Z ¥(is) otherwise .
1E€Y\W
e For every s € Tp if the nodes in the selected subset A used to compute ¥(s) are marked,

then S is the largest tree made of marked nodes.

Remark 11 An other possibility to approzimate the estimator nyﬁ would be to use a Monte-
Carlo Markov Chain simulation to approzimate the mizture (see [16] for a discussion in the

framework of decision trees).

2.9 Experiments and natural language processing applications

As an application for the estimators studied in this paper, we show here how they can be used
to model texts written in natural language, and give results from a text clustering experiment
based on these statistical models.

For a given alphabet A, a text T written in natural language (e.g. in English or Japanese)
is a string which can be parsed into a series of letters. One can think of A as the letters
of the alphabet {a,b,... ,z}, the ASCII symbols set, a dictionary of words, or whatever set
of symbols in terms of which the text can be represented as a sequence (t1,... %) with
Vi€ [1,|T)),t; € A.

For a given D < |T|, let (X,Y) € AP x A be the r.v. obtained by randomly choosing an
index i € [1,|T| — D] uniformly and setting

X =t...tixp-1 ,

Y =typ .
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For a given N, let us consider the statistical experiment that consist in sampling N i.i.d
variables (X, Y;)ie[l’ N] according to this common law. This experiment can be used to train
any regression model to infer Y from X, which gives a representation of the initial text as a
stochastic model. Note that the initial text is deterministic, and that the random nature of

the variables comes from the sampling.

2.9.1 Tuning the parameters

As an example let us consider the model selection algorithm described in Section 2.8.2. Equa-
tion (2.17) shows that the “cost” of adding a node to a model is log(cp) /3, which is a parameter
we can try to optimize for a given problem. Note that if we were trying to compute the ac-
tual estimator which is a mixture of models, for instance using Monte-Carlo simulations, two
different parameters could be varied : ¢p and B, which influence the shape of the prior and
the speed of learning from examples respectively.

A second parameter can be optimized : K/N, which is related to the relative sizes of the
estimation and the validation sets.

In order to observe the effect of these two parameters, Figures 2 and 3 show results of an
experiment carried out from the text “Far from the madding crowd” from T. Hardy, which is
the file 'book1’ of the Calgary corpus!(used in [10]). The text (in English) was parsed into a
sequence of characters using the alphabet A = {a,b,... ,z, O} where O represents anything
that is not a letter. The estimator was then trained on i.i.d. samples of size N = 20,000 with
varying K/N and log(cp)/B, and its likelihood was computed on a test set made of 5,000
new ii.d. samples. Figure 2 shows the per-sample log-likelihood for varying log(cp)/8 and
K/N, and figure 3 shows for clarity purpose the same curve for K/N = 0.7 being fixed.

For any K/N, the value log(cp)/B = 0 corresponds to the classical maximum likelihood
estimator. Negative values correspond to negative penalizations and therefore favor large
models. Positive values are more natural and correspond to penalizing more large models
than small ones.

For log(cp)/B < —3, the likelihoods of the models on the test set are very low : this is the
classical phenomenon of overfitting, that is favored by the negative penalization. In this region
indeed the selected model appears to be too large for its parameters to be accurately estimated.
As log(cp)/p increases to 0, the performance increases and peaks at a value a bit larger than
zero, which corresponds to the optimal penalization for the particular unknown probability
and the particular sizes considered. Larger penalization values decrease the performance of

the selected model on the test set because its dimension becomes too small. In that case,

! Available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/
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Empirical per-sample log-likelihood ( N=20,000 )

o 5 Node penalization ( = log(C)/t

KIN

Figure 2: Log-likelihood with N=20,000 for various K and log(cp)/3

indeed, the gain in the variance term due to decreasing the number of parameters to estimate
does not balance the increase of the bias term which corresponds to the distance between P
and the selected model.

Figure 2 also shows that for a given penalization there exists an optimal choice of division
between the training set and the validation set, which corresponds to the balance between
training the Laplace estimators and choosing the best model : it is better to have a training
set a bit larger than the validation set. Naturally, as the penalization increases, the optimal
K increases too, because increasing the penalization means giving less importance to each

validation sample.

2.9.2 Comparison with other models

Many other statistical models can be used to characterize the relation between X and Y.
In particular, the so-called N-gram models are widely known and used in natural language
processing to characterize sequences of characters (e.g. for character recognition purposes) or
words (e.g. for speech recognition purposes). In a N-gram model, the distribution of Y is
supposed to depend on the suffix of length N — 1 of X, with N being fixed.

Thus N-grams are particular regression trees, i.e. complete trees of depth N — 1. The
difficulties arise when one wants to estimate the N? distributions of Y from a finite training

corpus. An adaptive approach as the one described in this paper is better at balancing the
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Empirical per-sample log-likelihood ( N=20,000 , K/N=0.7)
T T T
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=
T
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Node penalization ( = log(C) / beta)

Figure 3: Log-likelihood with N=20,000 for & = 0.7 and various log(cp)/S

complexity of the model and the precision of the estimation which basically depends on the
size of the training corpus.

As an example, figure 4 shows the log-likelihood of different models trained on i.i.d. sam-
ples of growing size (between 100 and 10,000) and tested on an i.i.d. sample of size 5,000.

The models tested are:
e N-gram models for N = 1,2, 3,4, with classical non-adaptative Laplace estimators.

e The aggregation using a Gibbs estimator, with classical non-adaptative Laplace estima-

tors.
e The aggregation using a Gibbs estimator, with adaptive Laplace estimators.

Following the results of the first experiment, the parameters for aggregated estimator were
set to log(ep)/B = 0.5 and K/N = 0.65

This experiment shows that the adaptive regression model is more efficient than all N-gram
models for any training set size. It also shows the improvement gained with the introduction
of the adaptive Laplace estimator and the adaptive probability on the model space. Indeed,
it is clear that the support of the distributions of Y are often smaller than the whole alphabet
(e.g. the character following the letter 'q’ should almost always be a "u’ or a space), and that

the strings X observed only form a small subset of the set of sequences of D characters.
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Performance of various models for increasing N
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Figure 4: Comparison with other models

2.9.3 Unsupervised text clustering

While the distribution of a letter following a string might have straightforward applications as
such (e.g. for disambiguation purpose in optical character recognition systems), the estimator
we study can be considered more generally as a way of representing a text because it is able

to ’learn’ various statistical features very quickly.

As an example it can be used to define and measure a notion of distance between texts.
Indeed let T1 and T» be two given texts that one wants to compare. Using them to generate
statistical experiments, it is natural to say they are close to each other if the model that has
been trained to explain the first statistical experiment is good at erplaining the second one, and

far from each other otherwise.

This can be quantified as follows. Suppose each text is used to generate a statistical
experiment, on which an estimator is trained. This generates two models @Q1(Y | X) and
Q2(Y | X) which can be used afterwards to compute the likelihood of any sample (z;,y;)Y ;. In

particular one can define a pseudo-distance between the two texts with the following formula:
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Q1 (exp1) Q2(exp2)
Q1 (exp2) +log Q2(exp1) ’

where exp; means the experiment that consists in sampling N i.i.d. pairs (z,y) from text

d(Tl,TQ) = log (218)

T;. This pseudo-distance is symmetric and satisfies d(T,T) = 0 for any text T'.

Let now a set of p texts {T1,... ,Tp} be given. The unsupervised text clustering problem is
the problem of grouping these texts into a number of categories according to their similarities.
Most existing clustering algorithms require a distance-like functional to be defined between
any two elements to be clustered, that can be the pseudo-distance defined by equation (2.18).

To illustrate this we took a series of 8 books from each of which we extracted 5 texts, and

computed the distance between any two of the resulting 40 texts (see table I).

Text Number Extracted from
1-5 Wintson Churchill (The Crossing)
6-10 Joseph Conrad (The Arrow of gold)
11-15 Arthur Conan Doyle (The hound of the Baskervilles)
16-20 Karl Marx (Manifesto of the communist party)
21-25 Baruch Spinoza (Political treatise)
26-30 Jonathan Swift (Gulliver’s travel)
31-35 Francois Marie Arouet Voltaire (Candide)
36-40 Virginia Woolf (Night and day)

Table I: Text database

Each text was 12,000 characters long and was used to generate three files by i.i.d. sampling.
The first two files (8,000 and 4,000 samples) were used as estimation and validation set, while
the third file (5,000 samples) was used as a test set to measure the likelihoods used in equation
(2.18). The parameter log(cp)/S was set to 0.5.

Figure 5 is a typical profile of distances between one text (here the text number 23,
extracted from Spinoza’s Political Treaty) and all other texts. It shows that the distance with
the four texts extracted from the same book (i.e. texts 21, 22, 24 and 25) are clearly smaller
than the distances with the rest of the database, and that it could “recognize” the similarity
within the texts extracted from the same book.

On figure 6 we plotted a ’o’ as soon as the distance between two texts was smaller than
1.03. Clusters corresponding to the books already appear with this naive thresholding method.

One should remark that no dictionary or preprocessing of the text was used. The usual way

of representing a text as a “bag of words” in the literature about natural language processing
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Distance with text n.23 (Spinoza)
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Figure 5: Distance between text n. 23 (Spinoza) and the other texts
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is limited as far as statistical estimation is concerned because the number of possible words
is much larger than the size of the text itself. On the other hand, we experimented models

based on characters only which lead to less risky estimations and encouraging results.

2.10 Conclusion

We presented a family of statistical estimators of a conditional distribution and proved upper
bounds on their risk. The main characteristic of these estimators is their ability to find a
good trade-off between the bias of different models and the risk of their estimation for a given
number of observations.

Such estimators are interesting in cases when the “real” law Py is complicated, but pro-
gressively approximated by models of increasing dimensions. As an example we considered
the issue of modelling texts written in natural language, for which classical Markovian models
like N-grams are limited in depth because of the size of the training corpus that is needed.
In spite of the simplicity of our models encouraging experimental results make us believe
that important improvement could be obtained by carefully designing pertinent models for a

particular application while keeping in mind the necessity of efficient statistical estimations.



Chapter 3

Double mixture and universal

inference

Abstract

Given a family of finite dimensional statistical models and a finite number of obser-
vations of a random variable, we show how to build a “double mixture” estimator
for the density of the random variable whose risk in terms of Kullback-Leibler di-
vergence has a sharp bound compared to the risk of the best model in the family.
This estimator is a mixture of model estimators which are themselves mixtures in

the continuous parameter spaces of the corresponding models.

The idea of using double mixtures has been studied for a long time in the field
of universal compression in coding theory but we highlight the fundamental dif-
ferences between our statistical estimator and “twice-universal” coding algorithm,

due to the difference in the criteria to optimize.

3.1 Introduction

The problem of estimating the probability distribution P of a random variable X on a space
X from a finite number of i.i.d. observations Xi,...,X, is a central but difficult problem
in statistics. As pointed out by Vapnik ([86]) it is generally ill-posed when no assumption
is made on P. In the real world, however, the statistician usually knows nothing in advance
about P. In that case a natural approach consists in building a family of parametric models

{P,, € ML (X);0m € O, C RP™ m € M} and considering the minimization problem

65
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inf inf [(P,P, 1
ngMaT:g@ml( . Po,,) s (3.1)

where [ is a loss function between probability distributions. In other words, rather than
trying to guess P, the statistician looks for the most informative projection of P on the most
reasonable model ©,,.

An estimator for this problem of distribution estimation is a measurable mapping P from
X™ to ML (X). The performance of such an estimator with respect to a true distribution P

is usually measured in terms of its average loss, also called risk:

EP@n(dX{V)l (P,P(X{V)) .

For an estimator with value within a particular model (parametric estimation), this risk

can often be expressed or at least upper bounded by the sum of two terms:

e a bias term which represents the distance between the actual probability P and its

projection P, on the particular model;
e a fluctuation term which represents the difficulty of estimating Fp,.

Usually the larger the model the smaller the bias, but the larger the fluctuation risk. A
natural way of solving the estimation problem is to decompose it into two stages : first build
good estimators B, for every model m € M and then select one model i with the lowest
total risk. With this approach the final estimator Py, is the estimator associated with the
model supposed to realize the best trade-off between bias and fluctuation. This philosophy is
the starting point of many techniques in the field of model selection, to which a huge amount
of literature has been devoted. As we won’t further develop this approach let us just mention
typical references including works by Akaike ([1]), Mallows ([56]), Schwarz ([76]), Rissanen
(|66]), Barron and al. (|6]) and Vapnik ([|86]).

Model selection is not the only way to deal with problem (3.1). An other approach
is gaining attention in statistical estimation: the idea of model mizture. This idea led to
remarkable theoretical and experimental results in coding theory for compression purpose
where mixture codes ([30]) are known to be universal with respect to a class of encoders,
under quite general assumptions.

As far as statistical estimation is concerned, every Bayesian estimator can be considered
as a mixture estimator. While these estimators are optimal for the Bayesian risk theoretical

results concerning their performance in the worst case setting are difficult to obtain. Barron
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([5]) and Barron and Yang ([8]) considered a Cesaro mean of Bayesian estimators to derive
minimax density estimators for non parametric density classes. More recently Catoni con-
sidered an equivalent estimator together with a half-sample trick to deal with parametric
density classes ([23], [24]), and showed that a thermalized version of the Bayesian estimator
([22]) could approach the minimax risk under very general assumption.

In a recent paper (|87]) we applied Catoni’s estimators in the framework of regression.
We showed how to build a mixture estimator P, = Ziezw(i)ﬁmi where the weights w as
well as the estimators B, are built from the observation, and obtain a universal risk bound.
This approach involved a split of the observations into an estimation set used to build the
estimators Py, for every m € M and a validation set used to compute the weights w(i) of
each estimator.

In this paper we go one step further in this mixing approach. After observing that the
estimators Py, for every model can be mixtures on the continuous parameter set themselves
(think of the Laplace estimator for a Bernoulli distribution for instance), we show how it is
possible to carry out a double mizture in one stage by considering the larger parameter set
{(m,0m),m € M, 0, € O,}. This means in particular that the observations are not split
into two sets any more, and that the same observations are used to estimate continuous
parameters and model structure in the same time. The idea of a double mixture finds its
roots in coding theory where double mixture codes have given very interesting results (|41],
[71]). An important source of inspiration was the work of Willems, Shtarkov and Tjalkens
concerning the context tree weighting algorithm ([91] , [92]), together with Catoni’s Gibbs
estimator ([22]) which can be used to mix discrete as well as continuous parameters.

This paper is organized as follows. After setting up the general regression framework
which will be used afterward in section 3.2 we state the main result of this paper in section
3.3 (Theorem 8) whose proof is postponed to section 3.6 because of its length. Section 3.4
is a comparison between the estimator we propose for statistical estimation and “universal”
estimators used in coding theory, and section 3.5 presents a particular application of our
estimator for string analysis, with an efficient implementation. We refer to a previous works

([87]) for suggestions on how to use such models for natural language processing applications.

3.2 Notations and framework

In this section we present the regression framework together with general notations which will
be used within the paper.

Let (X, B1) be a measurable space and (Y, B2) be a finite measurable space endowed with
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the discrete o-algebra. We note « the size of the set ). The goal of statistical modeling
is to predict the value of a variable Y € Y from an observation X € X. The set ) being
finite this covers in particular the problem of categorization. However we focus on estimating
the conditional law of Y knowing X, and not on the design of a classifier. In particular
the criterion we will use is a measure of the difference between laws and not the number of
categorization errors. Note that the variable X can be almost anything.

To model the random nature of X and Y we suppose that a family of unknown exchange-

able probability distributions is given :

VNEN  PyeM((Xx))V,(B05,)),

and we let {(X;,Y;) = Z;;i=1,... ,N} be the canonical process.

One can for instance think of Py as a product measure P®" with P being a probability
on (X x Y,B; ® Bs), if the observations are supposed to be i.i.d. However we will only use
the weaker assumption that Py is ezchangeable, i.e. that for any permutation o of {1,... , N}
and any A € (B; ® By)",

Py (21 € 4) = Py ((02)) € 4),

where 07 is the exchanged process

(UZ)i:ZU(i)a ’L=1,,N

The property of being exchangeable is more general than the property of being a product
measure, and it covers more situations which can happen in the real world, e.g. random split-
ting of the observations into different sets, or sampling from a finite set without replacement.

Within this framework the observation is va ~1 and the goal is to estimate the unknown
conditional distribution Py (dYy|Xy; Z{~").

3.2.1 Finite context model

Without any further restriction on Py the problem of density estimation based on empirical
data can be ill-posed. Therefore we suppose a family of models is given. It will be used to

approximate the unknown distribution.

Definition 2 A model m = (Sp,, sm) consists of:
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o a finite set S, = {s1,--.,8D,,}- Dm is called the dimension of the model.

e A measurable mapping Sm : (X,B1) — Spm, which describes how the space X is parti-

tioned according to the model.

For any model m € M and x € X, sy, (x) is called the context of z with respect to the

model m.

The goal of any model is to partition the space X" into D,,, categories through the mapping
Sm, and to build a conditional distribution for Y which only depends on the category of X.
Such a class of models includes in particular regression based on histograms, CART models
([17]) or representation of complex objects (e.g. images) using filtering of features extraction.

Finally we suppose given a countable family of such models M = {m;};.; with Z being a
countable index set, as well as a prior probability distribution « on Z. The role of the prior
distribution 7 which influences the performance of the final estimator will become clearer in
the sequel.

The variable Y being discrete its distribution is a Bernoulli distribution characterized by
a parameter of the a-dimensional simplex ¥ = {# € [0,1]*/Y.%, 6" = 1}. Therefore any
model m is associated with a parameter space ©,, = %P7 to define a family of conditional

probability distributions with the following density:

Vm € M,V = (0s,,-.. ,0sp, ) € Om,V(z,y) EX XY Py, (ylz) = 6"

sm(z)"

3.2.2 Problem

As we want to compare estimators based on different models we can not use a distance
defined on the parameter space. In order to measure directly the distance between the true
sample conditional distribution and the estimated one we use the conditional Kullback Leibler
divergence (also called conditional relative entropy, see e.g. [29, p. 22]) which is an intrinsic

and fundamental measure of risk defined for two probabilities P; and P, with densities p; and

p2 by :

p1(ylz)

K (PL(dY|X), P,(dY]X)) = E 1 :
(PL(dY|X), P2(dY| X)) = Ep, (4x,av) 8 o)

The model selection problem for the average Kullback risk is to solve approximately,

knowing the sample va ~! the minimization problem:
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ot B )k (PN (dYN|XN;ZlN_1> Prg, (dYN|XN)) : (3.2)

where K(.,.) is the conditional Kullback Leibler divergence.

3.3 The double mixture estimator

The continuous parameter set associated with a model m € M is ©,, = £Pm. Let us define a
probability distribution on this set as a product measure p,, = p®P™ where y is the Dirichlet
distribution with parameter 1/2 on ¥, i.e. the measure with the following density with respect

to Lebesgue’s measure A(df):

1 F<g) @1
u(d@):ﬁr(f)a.i:1 m,\(da).
2

This prior, also known as Jeffrey’s prior, arises naturally in coding theory for compression
purpose because it asymptotically maximizes Shannon’s mutual information between an i.i.d.
sample drawn according to a Bernoulli law of parameter § and the parameter ([52], [27]). The
reason why we use it here will appear in the computation of the performance of our double

mixture estimator. Let us recall a formula that will be used frequently in the sequel:

o

1
TN+ =
.:1(+2)

VA e (R)® /(91)”...(00)”"#(&): F(f)al _ .
. F(ﬁ) P(Z)\i"f—%)
i=1

Based on these priors for the continuous parameters and on an arbitrary prior 7 on the

(3.3)

model set M, we can construct a double mixture estimator which takes the form of a Gibbs
mixture, as defined by Catoni in [22]. In order to clarify the definition of this estimator it
is convenient to introduce notations for the entropy of a Bernoulli model and the Kullback-

Leibler divergence between two such models, respectively as:

VOex  h(@)=-) 6Ylog,
yey

99
V(61,6,) €% d(61|6;) = > 6Ylog 9—31,.
yey 2
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For any model m € M let us also introduce the following random variables which are
expressed in terms of Z (the dependency w.r.t. m is not indicated in order to simplify the
notations, and because no ambiguity about which m these variables refer to should arise in

the sequel):

\V/('y,S) € y X Sm ai{ = l(Sm(XJ) = s and Y} = y)’

V(y,s) €Y X Sm b =1(sm(Xn) =sand Yy =1y),
V(y,s) €Y x Sm,V(B,€) eRZ  1¥(B,¢
Vsesmav(ﬂag) ER2 ns(ﬂag -

yey
(B8 n?(ﬁ,»s))
Vs € Sp, es(ﬂ,f)—(ns(ﬁ’g)""’ns(ﬂ,ﬂ ’

The reason for using these notations basically comes from the following equality used

to express the thermalized likelihood of a sequence Z{¥ with respect to a particular model
(m, Om):

N-1 B
(H PO (Yi|Xi)) Prmom (Y| X )
i=1
_ H H(gys;)ng(ﬂ,ﬁ)

SESm YyeY (3‘4)
= 11 exp |ns(8,6) D 0%(8,€) log 6%

SESH yey
= I exp [-n5(8,6) (b (6:(8.,€)) +d (8:(8,)1165))] -

SESH

Following these preliminaries we can now state the main theorem of this paper which
contains the definition of the double mixture estimator as well as a universal bound for its

risk:
Theorem 8 Let

>‘<=24+810g<N+%+1),
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and B > 0 such that

1 _ log x '\ log x
ﬁ<—1(\/1+(x—1)(2— )_() < —1)

2log log(N)
N—co  8log(N)

For any exchangeable distribution Py on (X X y)N , for any choice of prior probability
distribution © on M, the posterior Gibbs distribution p defined on the set

{(m,Hm) PRLL € Maam S em}

p(dbm|m) ~ ] exp [—ns(B,0)d (85(8,0)165)] u (d6s),

SGSm

and

p(m) ~ (m) gm{ Pﬂ(“g) (n éff;ﬁ)> =N

[ exp {—na(6.0) [0 (.(6,0)) +a (0.0.0)10.)]} s(as.)}

can be used to form the double mizture estimator

GY (aYn1Xn; 2™1) = Byt o) Pon (45| X )
which satisfies
Epy a8k (PN (dYN|XN;Z{V—1) ,GY (dYN|XN;Z{V—1))
< inf {EPN( -k (PN (dYN|XN; Z{V—l) P, (dYN|XN))

meEM,0m €O,
1 a—1 1
— | D 1
+ﬂN( mg +og7r(m)+CN(m)>},

with

a2 (0%
On(m) =Bpy ), (4ns<ﬂ,/3) "y mins (6(5, 5)) +2>'

SESm

This theorem is proved in section 3.6.
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Remark 12 The double mixture estimator can be erpressed in the following way:

Gy (dYN|XN;ZfV_1) = Ep(m,d0,) P, (AYN|XN)
= Y p(m)Epap,, jm) Prmip,, (YN |Xn).
meM
Therefore it is a mizture under p(m) of the estimator By, \m)Pm.6.,, (AYN|XN) which
is, for any given model m, a thermalized version (at inverse temperature (3) of a Bayesian
estimator for the continuous parameters with respect to Jeffrey’s prior on every simplex. This
Bayesian estimator for 0, has been studied in particular by Krichevsky and Trofimov ([52]).

One interesting feature is that it can easily be computed using the following formula:

1
YN
/Bas (zn) + B}

m

E (40,0 m)Pm.bom (YN|TN) = (3.5)

Y a
Usm(en) T 3
yey

Remark 13 For a given model m the additional term Cn(m) decreases to zero and becomes
negligible compared to the other terms as soon as the projections P(dY|s,,(X) = s) are in
the interior of the simplex for all s € S,,. FEvery node s € Sy, for which this projection is
on the vertex of the simplex adds a risk of order § which is not negligible anymore compared
to Dp(a—1)/2 4+ log1/m(m). This is due to the fact that Jeffrey’s prior is asymptotically

minimaz in the interior of the simplez, but only mazimin on the whole simplex (see [93]).

Remark 14 The upper bound on the inverse temperature (3 is of order (loglog N)%/log N.
However this bound might be conservative, and it is reasonable to think from the computations

in [22] and the ezperiments in [87] that B = 1/2 will work in many cases.

3.4 Twice-universal coding and statistical estimation

Let us have a look at the differences between the double mixture estimator we introduce for
statistical regression purpose and “twice-universal” estimators used for compression in coding
theory. In the compression framework the variables Y{ = Y] ...Y; play the role of the variables
X; and the goal is to design a family of conditional probabilities {If’i(in\Xi)}ieN such that
their per-sample redundancies be small compared to the per-sample redundancy of the best

model when the number of observation goes to infinity, i.e. that

+ en(m,0p)

1 1 1
—Epn~ log — < inf —Epn~ log
N [IL, Pi(YilX;) ~ meMbmeon N [T Prnoa (Yil X0)
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with
Ym € M,V0,, € O, ]\}1—1}100 en(m,0m) =0.

More precisely such a family of estimators is called a “twice-universal” code ([71]) if it
is strongly universal (in the sense of [30]) with respect to every model m € M, ie. if
supy, €n(m,0,,) goes to zero as N goes to infinity with the minimax rate of convergence for
the model m. In other words a twice-universal code is minimax up to a vanishing term in the
convergence rate with respect to every model m.

A good solution to this apparently difficult problem is to take for P a so-called “two-
stage” mixture or double mixture ([41]), that is a discrete mixture of estimators for every
model which are themselves mixtures of the probability distributions in the model class w.r.t.
to a least favorable prior on the continuous parameter set. An impressive implementation
of this idea has been carried out for a binary alphabet (o = 2) in the so-called context tree
weighting algorithm ([91]), where Jeffrey’s prior p(df) is used on every simplex together with

an arbitrary prior m on the model set to build the estimator:

A HM@WJ()

. EM mG@m _
Pl (yilzi) = = ; (3.6)
/ Hpm Om yj|$J) ( )
which satisfies :

1 1 1 1

—Epn~ log : < inf —Epn log

N Hfi1 P, (Yi] X;) mEM Im €Om N H’fil Prg,, (Yi| Xi)

log ns
+ 1 g +Z( )
SESm

This expression shows that this family of estimators has a per-sample redundancy which
decreases at the minimax rate D,, log N/(2N).

In the case of statistical regression the criterion we are interested in is slightly different
from the redundancy used for compression purpose. Indeed we are only interested in the
estimation of the conditional law of Yy knowing Xy and the observations Z , while the
redundancy is only an average of this criterion for 1 = 1,... ,N. The relationship between

the redundancy and the statistical risk is more precisely expressed in the following equality :

1 1

N [I;2, Q(Yi|Xi) Y|X )
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In other words the estimates of the conditional law of Yy knowing Xx obtained from
a universal coding procedure have good performances in terms of cumulative risk for an
increasing number of observations.

In order to compare the twice universal coding algorithm (3.6) and our double mixture

statistical estimator defined in Theorem 8 we need to rewrite (3.6) as:

/ HM%me )

€o
Pu(ynlzn) = D pe(m — :
M
me H Prmb (Y5125) 1(dOm)
emeem ] 1

with

m(m) Hpm9 y]"TJ) (dfrm)

0m€®m ] 1

_ |
J/ II Pt 01 (5256
! EO!

mjl

Ym € M pe(m) =

(3.7)

mEM

If one forgets one second about the inverse temperature § (think of 8 = 1), it is possible
to compare this posterior with the one expressed in Theorem 8 to point out one important

difference:

a-1 a
VmeM  p(m)~ p(m H (n52(71r’el)) ’ 'FW; : (3.8)
e (3)

This shows that in order to get a small statistical risk instead of a small cumulative risk
one needs to modify the prior 7 on the model set in order to take into account the differences
in the difficulty of estimating the continuous parameters. Besides a constant “penalization”
term which does not depend on N, one sees in expression (3.8) that as N increases, models
with a larger number of parameters should be given more and more weight because the term
[Lses,, ms T behaves like N “z Pm.

An other way to look at the particularity of our double mixture estimator is to observe
that the posterior weight p(m) of a model m is essentially proportional to the maximum

likelihood of the observed sequence in the model class. Indeed one can notice that if 6 is in

the interior of the simplex,

n—,oo T2

i P(3)  ny-er
/Eexp (—nd(0]]6)) ~ (3) X (—) )
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and therefore, for any model m in M,

plm) () exp (~Din(a— 1)/2) x II [ exp (5. 01(61(5,0)) utt,
" (3.9)
oo Ew(m) exp (—Dp(a — 1)/2) x 0:161(19)7” zl;ll Db (YZ|XZ)5

Compared with (3.7) one sees that instead of doing a double mixture one should:

e replace the mixture estimator for continuous parameters by the maximum likelihood in

every model;
e penalize the likelihood by a factor exp (—Dp, (o — 1)/2) .

As far as performance is concerned the main difference between our double mixture esti-
mator and a twice universal code is that the bound of the statistical estimator is not on the

cumulated risk.

Remark 15 An fundamental link exists between minimaz estimators and mizture estimators :
in can be proved under quite general assumptions that a mizture estimator with respect to a
“least favorable” prior can be a minimaz estimator (see a survey and references in [58]). Our
formula for p gives an idea of what such a least favorable distribution could look like in the

problem considered. Two points are of interest:

e The factor exp (—Dp,(a — 1)/2) in the expression of p (m) can be regarded as a penalty

term for the dimension of the continuous parameter in each model.

e The prior on the simplex is Jeffrey’s prior. This suggests a penalty term for the con-
tinuous parameters inversely proportional to the variance of the corresponding Bernoulli

models.

This can also be related to penalized mazimum likelihood estimators ([6]) in which a penaliza-

tion of models proportional to their dimension arises for other reasons.

3.5 Double mixture on context trees

3.5.1 The estimator

In this section we present a particular form of the double mixture estimator defined in Theorem

8 when the variable X is a string and the models considered are context trees. In other words
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we consider the case X = YP. We will basically use the same models as described in [87]
where an application in natural language processing is proposed.

Let D be a fixed integer. We define a model m by a non-empty set S, C UZD:O V¢ of finite
strings of length not larger than D such that any suffiz of any string of m be also in m (by
definition a suffix of a string z; ...z; is of the form z;...z; for some j <4). This definition
implies in particular that the empty string A belongs to every model.

The projection s,, associated with a model m is simply the transformation from any string
z € X into its longest suffix that is in S,,.

Finally we can define a natural probability on M as follows:
Ym e M n(m) = CPm, (3.10)

where the constant C is adjusted so that ), .\, m(m) = 1.
It is shown in [87] that in that case,

1
log — <141 .
ogC_ + log o

Therefore the “model risk” is controlled as follows:

Ym e M log < (1+log @) Dy,

1
m(m)

As a result we can apply Theorem 8 to this particular setting to obtain:

Theorem 9 Let G]ﬁv be the double mizture estimator as defined in Theorem 8. For any

ezchangeable distribution Py on (X x V)V it satisfies :

B a2y (P (105 2) 3 (vl 7))
< inf {EPN (azv 1)K (PN (dYN|XN; ZfV—l) » P, (dYNIXN))

mEM,Gme@m
D -1
—l-ﬁ—]r\r; (a2 +1+loga+CN(m)>},

with

C (m) :LE Z < a2 + @ )
M D, 2 \4ny(5,8) T g mina(6(5,8)) + 2/

Note that the larger the alphabet size the smaller the model risk term 1+ log o compared
to the parameter risk (a —1)/2.
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3.5.2 Implementation

The exact Gibbs estimator as a double mixture is difficult to compute efficiently because
the number of models is very large as D and « increase. However it is possible to imagine
a suboptimal implementation which computes an estimator which might be not so different
from the double mixture estimators in many concrete cases.

We propose to replace the double mixture procedure by the selection of the model with the
largest posterior distribution. Our hope is that in many cases the Gibbs posterior is unimodal
and that the selection of a particular model with a large posterior probability is representative
of the mixture in terms of probability law.

Following (3.9) and (3.10) we see that a good candidate for the quantity to maximize is:

ple D 1 a-—1
v(m) = log sup p,ng-X-——m<log—+ >
( ) 0,.cO, E m ( 1| 1) /8 C 9
This equation shows that the model selection we propose takes the form of a penalized
maximum likelihood with a penalization proportional to the size of the model D,,. In order
to get an efficient implementation of this model selection procedure we can use a context tree
(see [91], [24], [87]), i-e. a suffix tree representing all possible strings of length smaller than
D hierarchically, the root of the tree being the empty string A. Let us attach the following
counters to every node s of the context tree (we use the equivalence between a node and the

associated string):

=2

—1
Vie) al 1 (s is a suffix of z,, and y,, = 1),
1

3
I

S
I
M=

1 (s is a suffix of z,) .

n=1

If we now note 6 = (log1/C + (v —1)/2) /8 and define the recursive function w on the

context tree :

( Y Yy
Ifi(s) =D w(s) =Y Zlog-s 4,
n

yey 't s
< =D a ol
Ifl(s) < D w(s) = max Z w(is) + Z ieN log N — 4,
Ve ieN yey s — Z Tis g — Z Tis
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then it is easy to see that max,;,ecasy(m) = w(A) and that the model m which realizes this
maximum is the connected component of X in the set of nodes that are selected in A at every
node in the definition of w.

For a given node s the problem remains to compute the corresponding subset A and to
mark the selected node. This can be approximated using an iterative procedure to build N,
starting with A/ = () and adding nodes one by one until the function to maximize locally stops
increasing.

The complexity of such an optimization procedure is linear in the number of nodes of the
context tree, because at most a tests are performed at every node to test the children nodes
to select. It is also not more than linear in N because only the visited nodes are concerned,
and the size of memory required to store the context tree is also not more than linear in the
number of observations and of course bounded by the size of the context tree. In [87] we
show results of experiments using an implementation of an algorithm very similar to the one

described in this paper (a “two-stage double mixture algorithm”).

3.6 Proof of Theorem 8

3.6.1 The Gibbs estimator

Let us first recall some facts about the so-called Gibbs estimator introduced by Catoni in
[22]. For a given class of conditional probability densities {ps}ycg indexed by a parameter 0
living in a measurable space © endowed with a prior probability measure w(df), the Gibbs

estimator at inverse temperature 3 € Rt has a density

95 (yN|$N,sz_1) =E,; o(a0)Po (Yyn|zN)

where pg ¢ is the following Gibbs posterior:
N-1
P (il=:)” po (yn|wn)® m(d6)
1
ppe(d) = ———

o (yilz:)” po (yn|zn)* 7(d6)
=1

This estimator can be considered as a “thermalized” version of both the Bayesian (5 = 1)
and the maximum likelihood (8 = +00) estimators. Catoni studied in [22] this estimator in
the high temperature region 8 < 1 which is equivalent to a deliberate underestimation of the

sample size : to compute the Gibbs estimator, the empirical distribution of N —1 observations
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is plugged into the Bayes estimator for a sample of size (N — 1). The reason to consider
high temperatures is that the estimator gains stability with respect to the empirical process
when [ decreases (at the limit, it is constant when 8 = 0).

In order to control the risk of the Gibbs estimator let us introduce the following notations:

EPNM32{V(d : log pg (yn|zn)

p
=—|0A inf B¢
X ello BpyVar ,x  logps (ynlon)
Pae (d9)

and

N
11 potyilz:)’
78 (0) = EpyE ;v log 1;1
Ps.B (") 8
11 7o (yilz:)
i=1
The following result, which we will be used to estimate the performance of our double

mixture estimator, is a particular form of the main theorem of [22]:

Theorem 10 (Catoni, [22]) If the inverse temperature [3 is such that

5<L(\/1+(X—1) (2—1‘)“) logX—1),
x—1 X X

then the risk of the Gibbs estimator at inverse temperature B is upper bounded by

By (e (i 207), 0 (anvbrc )

i . 7N—1 07 (0)
= éé‘é{EPN(de“ 1y (P (YwlXws 2071) Py (@Y |Xw)) + ﬂ—N}

In case © is discrete one can show that v3(@) is upper bounded by log 7 ({6})™". However
the interesting point of this estimator is that it can be computed for any set of parameters
©, not necessarily discrete. In our case, we propose to apply this estimator for the set of

parameters

0 ={(m,0n),meM,b, €O},
endowed with a probability density expressed as a product:
w (df) = w(m) X H u(doy), (3.11)
SESm
where 7 is a prior probability on M (we will show that it has to be taken somehow different
from 7). Theorem 8 will be a direct consequence of Theorem 10 after estimating an upper

bound on the inverse temperature 3 to be used and on the risk bound ~z.
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3.6.2 Choice of the inverse temperature [
In this section we prove the following lemma:
Lemma 4
_ o
XSx=24+810g(N+5+1).

A direct consequence of this lemma is the possibility to chose the inverse temperature §

as

1 _ log x '\ log x
ﬂ<—1(\/1+(x—1)(2— x) . —1>

2log log(N)
N—oo  8log(N) '’
in order to fulfill the conditions of Theorem 10.

Proof of Lemma 4:
For any given z¥ € (X x Y)" and 8 € [0,1], let 1 and f be defined for £ € [0,1] by

N-1
77 Hpﬁ yz'-rz p0 yN'-TN)é

=

f(&)  =logn(¢)

The function f is related to the Gibbs estimator through the following equality:

log g (ynlzn;2i) = f(1) — £(0).

Moreover a simple computation shows that the first three derivatives of f are equal to the

moments of log pg(yn|zn) under p;i(dO) :

f'§=Ez log pg (yn|zN),
&) pﬂi(da) gpo (Yn|zn)

&)=V 1 :
() arp;{,\;(dﬁ) og py (Yn|zN)

FOE) =My logpy (ynlzn).
Pgl,g (d@)

Using (3.11) and (3.4) we see that for ¢ € [0, 1],
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N—-1
nE) =3 7 / Pt (Gi122)° Prgr, (| 2)€ ()
meM mz 1
m) T] [ exp [-nu(8.6) (@.(8.6)) + d(@:(8.6)10))) (0.
mEM SESm

However for every model m € M the variables n4(3,£) and 0,(83,€) only depend on ¢ for
s = s(zn). Besides, using (3.3), the integral involved in the preceding formula is known to
be (for s = s(zn)):

(e + 1)
Cte x o
P(ns+§+§>

bl

[ exp [-na(6.€) (4(B.(68,6)) + dB.(5,€)10.))]  (d61) =

where Cte is a term which does not depend on €. As a result, if we introduce the functions:

(ﬂas sw) T % +§>

V(m,§) € M x [0,1] i (§) =
P(ns+§+§>

bl

then n can be decomposed in the following way:

= Z )\m,um(g)v (3'12)

meM

where the (Am),,crq do not depend on &.
In order to express the derivatives of y and 7 let us introduce the Polygamma functions:
: d+t
VieN wi(z):d 7 log I'(2).

Indeed, if we use the notation:

Vlim) €NXM 4O = (B 0y 5 €)= (o 4 +6)

then we get:

P = Hm PG (3.13)
pr = pm (67" + (651)?) (3.14)
1) = pm (65 + 3T ST + 457) . (3.15)

In order to control v5 we will need the following controls on ¢ :
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Lemma 5 For all (2IV,&,m) in ZN x [0,1] x M the following inequalities hold:
02 ¢'(¢) = — (tog (N + 5 +1) +3),

and for any integer i, 1 > 1 :

0>M2—2(z‘+2).

— (6
Proof of Lemma 5: In order to prove the first inequality concerning ¢j* we use the fact
(see [64]) that the Psi function g is increasing on R, that 19(1/2) = —y —2log 2 and that
1po(2) < log z + 1 Therefore the following inequality holds V(29,&,m) € ZN x [0,1] x M :
m 1 «a
02 ¢'(&) 2 0 (5 ) —vo (BN +35 +1)
2—7—210g2—log(ﬂN+%+1) -1
@
> _ e
> — (log (N + 5 +1) +3)

In order to prove the second inequality of Lemma 5 we can use the expression of v; in

terms of the Hurwitz Zeta function, for 1 > 1:

(u) = (—1)t1; S 1
wilw = ()Y G

This shows that for any w > 1/2 and ¢ > 1:

_Yiy1(2)
"=

<2(3i+1).

Therefore, V(2V,&,m) € ZN x [0,1] x M and i > 1 :

Msm(zy) T 5+

m€) | el tEe Pl
0> i+1 — sm(zy) ' 2
— ¢ (€) ns@y)t3HE
o Gin(w)du
B o) T2 TE

>-2(+2) O
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We can now concentrate on the problem of upper bounding x. Using the fact that f =

logn, one easily gets, for any given z{v :

M?’z{v ) log pg (yn|zN)

o' Y
V 1 "
arp;{’\;(dG) ogpo (ynlzn) f
77(3)77 — 'y 2 (3.16)
T - ()? )_7(6)
n®n — 'y
~ o' — ()2 7

the last inequality holding because n'/n = f' = E,logpp(yn|zn) < 0.
Let us now consider an ordered list of models : M = (my,...). In order to simplify the

notations, let us write qﬁj for ¢, "7 for i € N, and let us note:

)\mi)‘mj Hmy; (§)Hmj (&) ifi#y;
L0, i (67 if i = j.

Using (3.16), (3.12) and (3.13) we finally get:

V(Za]) € N2a 9i,; — {

D7 o [(8h+9h) (65— #)* + 61365 — #1) + ¢l (3¢h — 9b) + 65 + 43

. (4,5)EN?
xs- gt
2z €24 Z qij [ QZ% + ¢1 + d’{]
("J')EN2
< inf inf (6h + #0)(6h — #1)” + 1 (36h — #1) + 136, — ob) + 6% + ¢
NezZN (i,j)eN? (6 — ¢)* + 41 + ¢]
<t (whwﬂ%;%?+wa% #) ¢m%f%xF %)
2 €21 (i,§)EN? (60 — ¢0) 1 ¢ qﬁ
- ¢
_ 7 j r2 2
< 12;\[ i ,;?efl\ﬁ (4(;50 + 44y + —I— ¢11)

§24+810g(N+%+1),

which proves Lemma 4. [.

3.6.3 Upper bound for the risk

Let us first state a lemma in order to be able to control the Psi function. Remember that the

Psi function g (also called Digamma function) is defined by
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Po(z) = % logT'(z).

Lemma 6

1
Vz >0 o <$+§> > log x,

-1
VaoeNa > 2,V >0 wo<x+%)§10gx+a

Proof of Lemma 6:

To prove the first inequality, we write 1y as an integral:

v 0 [e’s} eft eftm p
= -— - t
s Yole) /0 ( t l—et) ’

and do the same for log z:

o0
Vz >0 logz = / £ ~° &
0

Therefore, for all > 0,

1 00 o—zt—t/2 etz
1 — — ] = — dt
087~ Yo <$+2> /0 1—et ¢

-/ T e ()t
0

with, for all ¢ > 0,

e t/? 1
t) = - =
9(t) l—et ¢t
__ L 1
~ 2sinh (Z) ¢

85

Now it suffices to notice that sinh(¢) > ¢, which implies that 2sinh(¢/2) > ¢t > 0, and

therefore ¢(¢) < 0 for all ¢ > 0. This proves the first inequality of the lemma.

For the second inequality we can use the following, proved for instance in [2]:
1
Vz >0 Po(z) < logz — —.
2z

Therefore we can write, for all z > 0,

oo+ ) s~ U5 <o
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with
«a a—1 1
=1log (14 5-) - - .
fa(z) =log {1+ 2z 2z 2z +
Let us introduce y = o/(2z). Then we can write :
a—1 Y
o(z) = Y (y) = log(1 - - :
balz) = #A5) = log(1+9) = “y - 2l
whose derivative is
Y
@) () = 5yl —a) +2—a.

a(l+y)?
But « is supposed to be an integer larger or equal to 2, so (¢4%)'(y) < 0 for y > 0. In other
words ¢4 as a function of y is decreasing on R, and ¢%(0) = 0. As a result, ¢a(y) < 0 for
all y > 0. This is sufficient to prove the second inequality of Lemma 6. OJ
Let us now evaluate the risk defined by
N
11 Pm.on @ilz:)?
Ym e M, 0, € O, v8(m,0m) = EpyE log Z;l

Pg, ,5( m’,do’)
[1pm s, (wilz:)”

Using equation (3.4) it is possible to express the posterior Gibbs distribution as:

I exp [-ns(6,6)d (05, )116.)] 1 62) o,
pp.c (dOp|m) = =3 , (3.17)
T1 [ exo [-n.(6.904 (0.(6.6)10.)] n (0. .

SES

and

P86 (S) ~ 7 ( H/exp na(8,6)d (8,8, €)116,)] 1 (0) db

SES
x exp [ S (.68 (B:(5,0)| - (319)
sES
In order to simplify the notations let us write ny = ng(3, 3) and (3, 3) in the rest

of this section. As a first step let us prove the following lemma:

Lemma 7 For all m in M,

N

E,x  log[[pmen(wilz)™ < > neh (6,) + =Dy,
pﬂ B (dam‘m) i=1 el 2
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Proof of Lemma 7: Using (3.17) we get:

N
E ,~ 10g | [ P o (wilzi) ™°
Py (0 |m) 131 Im AT

/ nsd (8]65) e~ 4%110:) 1y (d6,)
by
SESM SESM / e_HSd(gSHOS)/‘L(dHS)

P

Consider now the function defined for z € R™ by
H / —znsd 95”(95 (dg )
SES

All integrals being absolutely convergent the derivation under the integral is possible

around z = 1, and one gets:

N I
E log [ | pm.s,, (yilz:) =" = nsh (65) — ) 3.19
pgg(damlm) gzl;[l o (y | ) sgs:m ( ) f(]') ( )
But f'/f = (log f)', so let us compute log f(z) for z > 0 :
log f(z) = ) log / mened(0ell) ()
SES
-y {m ) + log / —amo [1(0,)+a(7]10,)] u(dgs)}_
SES 2

The exact value of the integral is known in terms of the Gamma function (thanks to (3.3)):

—ans[h(8:)+d(0s]165)] _ - i L) «
log/ze u(dls) = C + Zlogf‘ zay + 5 logT (3mS + 2) )

i=1
where C does not depend on z. Taking the derivatives in z = 1 of these expressions and using

Lemma 6 we finally get:

f’(l) = - ( i 1 i o
T _é Lzz;as <T/)0 (as + 5) - logas) — N (1/10 (ns + 5) — 10gns>]
S Za;l
sES
a—1
- 2

D,
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and coming back to (3.19) we obtain:

N

_ — a—1
E zN longm,Hm(yi|xi) h < Z ngh (95) + ——Dn,. O
Pg,p(d0mim) 5€Sm 2
Let us use the notation:
vme MY € (X x )Y A, = ][ / emed(B:10) , (0.) dB,. (3.20)
by

SESm

Using (3.18) and (3.19) we get the following equality, for any m in M :

N
E,, o(mdom) 108 [ | Pmion (wilzi) ™7
=1
D Fm m =) om0 (Z noh (6) + = 1Dm)
< meM sem ]
) S~ () (2 e e o)
meM
Z 7 (m) g (m) e—9(m)
< meM
T wmyetitm
meM
with, for all m in M:
7 (m) =7 (m) e"T P (m,2l"),
g n -1
g(m) =Y ny(B,8)h (0:(8,8)) + QTDm

meM

N
_ a—1
= sup log || pm.g. (vilz:) ™ + 5 Drm-
Om€XOm iy

Introducing a threshold e to be optimized afterwards and using the fact that xe™* is upper

bounded by e~! on R, this expression can be upper bounded for any particular m € M by:
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meM
< e+exp(—¢) Z%(m)e_g(m)
meM
e ! Z T (m
< e+ exp (—¢) — =M

7 (m) e9(m)

Taking e = —1+41log ), -\ T (m) —log @ (M) + § (), we finally get:

N
E,, o(mdom) 108 | [ Pm.on wilzi) 7 < §(m) + log —— + log > #
=1 meM

This proves the following lemma:

Lemma 8 For any m' in M,

-1
sup 3 (m', Hm’) < a 2 D, +Epn log _ + log Z
em/E@m/ meM

fr(m)zfr(m)exp(“‘l )

Lemma 8 shows that the bound on g (m, 8,) is the sum of a parameter risk (o —1)D,;, /2

11 /exp —n(8,8)d (05(8, 8)|10s)] 1 (65) dbs.

SESM

and a model risk —log@(m)/ (3 7(m)), but with a functional 7 different from the prior

distribution 7. Besides, the ratio between 7 (m) and 7 (m) is the product of two terms:
e a term that only depends on the size of m : exp ((a — 1) D, /2);

e a term that depends on the unobserved 6,,(8, () :

T [ 0 [-na(5.0 (0.(6.5)0.)]  (6.) do

SESm

The reason why we decided to take pu equal to Jeffrey’s prior is that it makes the second
term asymptotically independent of § (at least inside of the simplex), thanks to the following

lemma.:

Lemma 9 For any (n,0) € Rf x X let f be the function,

f(n,0) =log ! <%) cod log (%ﬁ) —log (/2 e—nd(010) (d9)> :



90 CHAPTER 3. DOUBLE MIXTURE AND UNIVERSAL INFERENCE

This function satisfies:

0[2 (0%

V(n,0) eRf x¥  0< f(n,0) < EjLW'

Proof of Lemma 9: The upper bound is proven in [93, Lemma 1] for n € N and 6 being
of the form (ai/n,...,aqs/n) with (ai,...,as) € N*. The proof, based on Stirling’s formula
to approximate the I' function, still works in the general case (n,f) € R} x 3.

However the proof used for the lower bound in that case ([93, Lemma 2]) does not work in
the general case. Therefore let us just prove the lower bound. Using (3.3) f can be rewritten

as:

_ S oa—1. 2m & o1 o
f(n,0) = —nh(6) + Tlog; —izzllogf‘ (nO +§> +logI‘(n+ 5),

whose derivative w.r.t. n is equal to :

[

of . I
3, (0 =—h() - = —;91/)0 (n9 +§> + 1o (n+%)

2n

= _a2;1 — ;éi [1/)0 (nei + %) — log (nGZ)} ~+ g (n+ %) — logn

Y
- 2n 2n

<0

where we used Lemma 6 in order to obtain the inequality. As a result, for any given § € %,
the function n +— f(n, ) is decreasing on R} . Besides, Laplace method of integration shows
that for any 6 in the interior of the simplex,

lim f(n,0) = 0.

n—oo

As a result, f(n,0) > 0 for any n > 0 and 6 in the interior of the simplex. Now if 8 is on the
boundary of the simplex, one can consider a sequence (f)x>o of points in the interior of the
simplex which converges to §. By the theorem of dominated convergence for a fixed n > 0
the integrals [, exp (—nd(6x|0)) 1(d0) converge to [y exp (—nd(6]|6)) p(d6) as k — co. As
a result the lower bound that we proved in the interior of the simplex remains true on its

border, for any n > 0. This proves Lemma 9. O



3.7. CONCLUSION 91

If 7 is a prior on M, consider now the Gibbs estimator formed with the prior 7 such that:

7 (m)exp <_O‘T_1Dm)

Vm e M 7w (m) =

1 g\ 2
- Eﬂ(m) H Ca X (27‘(’6) '
SESm
where Z is a normalizing constant and Cy = I'(1/2)®/T'(a/2) = 7%/? /T (t/2).
Note that X is observed so ny is an observed variable which is invariant under permuta-
tion of 2%V, and therefore 7 can be taken as a prior to form the Gibbs estimator. For such a

choice, Lemma 8 is valid with the following 7:

7 (m) = 7 (m) exp (O‘glpm) A (m, 2)

m (m) H/E

1
Z 5€Sm o1 o
a N

Using Lemma 9 we obtain the following bound:

> ) 2

o o =
& w(m) — & w(m) 5 4dng  4ngmin;(6;) + 2

Finally, using Lemmas 8 we get:

a—1 1 o’ @
Orm 10m) < —— Dy +1 E: in; (0 ’
V(m,0m) €0 g (m,0pn) D) tlog - (m) + 5 (4ns + 4n, min; (6;) + 2)

Applying Theorem 10 finishes the proof of Theorem 8. [

3.7 Conclusion

Our goal in this paper was to adapt the idea of twice-universal codes studied in universal
compression to the problem of statistical density estimation. The similarity between the
redundancy criterion in compression and the cumulated statistical risk justifies this goal, but

some technical works has to be done in order to get a bound on the statistical risk of the
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estimator, and not on the cumulated statistical risk for samples of increasing sizes. We could
get a result for a mixture estimator by using a Gibbs estimator as studied by Catoni in [22]
and translating double-mixture codes ([41], [91]) into double-mixture statistical estimators.

The implementation procedure we suggest in section 3.5.2 takes the form of a penalized
maximum likelihood model selection, justified by the selection of the model with highest
posterior Gibbs distribution. However the Gibbs estimator is of a mixture of models and one
could also imagine a approximation of this mixture using Monte Carlo simulations, instead
of selecting one particular model (see [24], [16]).

As far as applications of such estimators are concerned, we refer to [87] for an example
in natural language processing. It is shown how to use adaptive models in order to represent
non-stochastic objects, e.g. texts, from which a statistical experiment is carried out. Such
a representation can then be used to characterize the original object; as an application the
similarity between two objects can be estimated by computing the similarity between the two

corresponding models.



Chapter 4

Text categorization experiments

Abstract

A new way of representing texts written in natural language is introduced, as
a conditional probability distribution at the letter level learned with a variable
length Markov model called adaptive context tree model. Text categorizat ion
experiments demonstrates the ability of this representation to catch informa tion

about the semantic content of the text.

4.1 Introduction

Managing the information contained in increasingly large textual databases, including cor-
porate databases, digital libraries or the World Wide Web, is now a challenge with huge
economic stakes. The starting point of any information organization and management sys-
tem is a way to transform texts, i.e. long strings of ASCII symbols, into objects adapted to
further processing or operations for any particular task. Consider for example the problem of
text categorization, that is the automatic assignment of natural language texts to predefined
classes or categories. This problem received much attention recently and many algorithms
have been proposed and evaluated, including but not limited to Bayesian classifiers ([55], [57],
[63]), k-nearest neighbors (|94]), rule learning algorithms ([80], [59]), maximum entropy mod-
els (|62]), boosting (|75]) or support vector machines ([50], [38], [51]). All these algorithms
share in common the way the initial text is processed from a long ASCII string into a series
of words or word stems, and most of them carry out the classification from variants of the
so-called wvector space model (|74]) which consists in representing the initial text as a vector
of frequencies of words in a given dictionary.

In spite of the impressive results obtained by some of the above algorithms on particular

93
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databases and categorization tasks it seems that these performances degrade as the database
becomes more general and the task less specific. As a result such apparently easy tasks as
filtering and classifying electronic e-mails into personal mailboxes remain non-trivial because
of the poorly-formatted nature of such texts and the variations in the language used and the
topics.

One of the reasons underlying these difficulties is the huge size of the set of possible
words compared to the size of each text and the number of texts available for training the
classifiers. This leads to large variations between texts inside of a category in terms of vector
space representations, and to difficult statistical estimations during the training period. Not
surprisingly support vector machines outperform most “classical” classification methods ([50])
because of their ability to deal with such issues.

This paper is an attempt to forget for a while the vector space model and consider al-
ternative ways of extracting informations from natural language texts. Instead of parsing a
text into tokens (words, word stems...) we just consider it as series of letters and estimate a
letter-generating source model, i.e. a conditional probability of emitting a letter knowing the
past, that “fits” the text correctly. The model estimation is done by an algorithm called adap-
tive context trees studied in [87] and produces a new representation of a text as a context tree
model, which can be seen as a variable length Markov model. In order to study the pertinence
of this representation a text classification algorithm is developed and tested. Encouraging
results suggest that this representation might be able to “catch” features correlated with the
semantic content of the text but not based on the words.

This paper is organized as follows. In Sect. 4.2 we highlight the general trade-off be-
tween the richness of a representation and the difficulty to estimate it, which motivates our
representation introduced in Sect. 4.3. A classification algorithm is derived in Sect. 4.4 and

experimental results appear in the following sections.

4.2 A Trade-Off in Representation

A digital text written in natural language is basically a series of bytes which has to be
processed and transformed into a representation adapted to further operations such as text
classification. A commonly used procedure consists in first rewriting it as a string of elements
of a finite alphabet A, e.g. a dictionary of words, word stems, tokens or letters, and then
representing the text as a vector whose coordinates are the numbers of occurrence of each
element of A in the pre-processed string. Depending on the alphabet A different situations

might arise:
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e If Ais very large (think of a dictionary of all possible words for English texts, which typ-
ically contains several tenths of thousands of words) the semantic information contained
in the vector space representation is known to be very rich, but the vectors correspond-
ing to two related texts might be completely different because of the small size of every
single text compared to the size of the dictionary. In other words the representation is
unstable because it is statistically difficult to estimate any hidden distribution in a large

space from few observations.

e On the other hand if A is very small (think of the 26-letters Latin alphabet plus some
punctuation signs) the vector space representation has the advantage of being more
stable even for small texts but the dramatic drawback of containing few semantic in-
formations. As an example the frequencies of various letters might be a good indicator
to guess the language of a text (e.g. English versus French) because they are usually
characteristic of the language even for small texts, but they might not be appropriate

features to guess whether an English text is about politics of religion.

These remarks show that there exists a trade-off between the information contained in a
representation and the difficulty to estimate it from a finite and possibly short text. As far
as the vector space model is concerned various techniques exist in order to decrease the size
of the alphabet while keeping the semantic contents of words ([3]): these techniques include
word stemming, thesaurus, stop words removal, feature selection etc...

Forgetting for a while the vector space representation it is possible to observe the same
balance phenomenon in an other setting : the representation of a text 7 by a letter-generating
source, i.e. by a conditional probability P7(Y | X) where Y is a random variable on the
alphabet A which represents the next letter to be generated and X is a random variable on
A* = Up>0A" (the set of finite-length strings) which represents the past sequence of letters.
The idea is that such a source is characteristic of a certain category of texts, and the goal of
the representation is to estimate the source from a text supposed to be generated by it.

Note that even if the alphabet is poor - think of ASCII symbols or the Latin alphabet - this
ideal representation Py (Y| X) is very rich because it suffices to define a stationary process
which might be assimilated to the process of writing a text in the category specific of the
source. In particular it contains the stationary probability of any finite-length string, e.g. any
word made of letters or even n-grams of words.

Estimating such a conditional probability from a finite-length text can be done with the
help of finite-dimensional models, e.g. finite order Markov models. Such an approach leads
to the same kind of balance as mentioned above in the vector space model : if the chosen

model is complex (e.g. large order Markov model) then it potentialy can better mimic the
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unknown probability P (Y | X') than simpler model, but it is much more difficult to estimate
from a finite number of observations. In other words a trade-off has to be reached between

the complexity of the model used to estimate Py(Y | X) and the risk when estimating it.

This representation as a letter-generating source is however better adapted to the trade-
off quest than the vector space model because it is easier to compare models of various
complexities (e.g. finite order Markov models) and chose a complexity than depends on the
information available. In the next section we present an algorithm that fulfills this requirement
and leads to an adaptive representation of any text as a more or less complex conditional

probability.

4.3 Probability Estimation through Adaptive Context Trees

We consider a text as a deterministic object from which statistical information can be learned
through sampling procedures. In order to get an independent and identically distributed (i.i.d)
sample (X;, Y;)i=1,.. v we propose to follow N times the following procedure : randomly chose
a position in the text with a uniform prior, let Y be the letter occuring at the selected position
and let X be the string made of the letters preceding Y backward to the beginning of the

text.

In order to estimate Py (Y| X) from the resulting i.i.d. sample (Xj, Y;)i=1,...,n we introduce
a family of finite-dimensional conditional probability distributions which consist in splitting
the space of past strings X into a finite number of cells and letting Y depend on X only
through the cell X belongs to. One natural way to design such a splitting is to let Y depend
on X only through one suffix: this covers in particular the case of fixed-order Markov models
but more generally leads to incomplete tree models as defined in [87]. We refer to this paper
for a more detailed presentation of incomplete tree models and just recall here the main

definitions.

An incomplete tree is a set of strings § C A* such that any suffix of any string of S be
also in S (a suffix of a string | is any string of the form z!, with ¢ € [1,[] including the empty
string A of length 0). For any integer D we let Sp be the set of incomplete trees made of
strings of lengths smaller than D. A suffix functional ss associated with any incomplete tree
S maps any finite sequence z € A* into the longest element of the tree that is a suffix of z.

Hence a partition of A* is associated to any incomplete tree.

Let ¥ denote the simplex ¥ = {8 € [0,1], ZL’;"I 0; = 1}. Together with a parameter

6 € ©° an incomplete tree defines a conditional probability distribution as follows:
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V(iz,y) e A" x A  Psp(Y =y|X =1z) =0(ss(x))y-

In other words the conditional probability of Y knowing the past X only depends on a
particular suffix of X as defined by the context tree S. Now we see that the number of possible
models is very large, ranging from very simple models with few parameters (e.g. the empty
string only, which is equivalent to an i.i.d. model for letters) to very complex models when
the tree size is large. The true unknown conditional probability P7(X |Y') is probably better
represented by complex models, but the parameter estimation based on a finite training set
is easier with simple low-dimensional models.

At this step it is necessary to define precisely the notions of “distance” between probability
and of “estimation risk”. A natural measure of similarity in the space of conditional probability
distributions is the conditional Kullback-Leibler divergence or conditional relative entropy (|29,

p. 22]) defined by:

DE1)IQU) = 3 Pl) Y Bly|z) log L 12

vedn ek Uy )

(where the first sum should be understood as an expectation).

Now suppose we have an i.i.d. set {(X;,Y;) =Z;;i=1,...,N} sampled from the joint
probability P, and an estimator I@’Z{v(|) of the conditional distribution Ps(Y|X). Then
it is natural to measure the risk of the estimator R(P) by averaging the conditional relative

entropy with respect to the i.i.d. sample used for estimation:

R®) =B |D (Br(]) B (1))].

Following the work in [87] the i.i.d. sample Z{ can be used to build an aggregated
estimator Gy (Y | X') with the following risk bound:

Theorem 11 Let

xn =log (N +a),

and

by = —— (\/1—(><N—1) (%%)—Q
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v/2loglog N
No+oo  logN

For any conditional distribution Pr and any mazimal depth D € N the aggregated estimator

using a Gibbs mizture at inverse temperature By (see definition in [87]) satisfies:

2
(v 1oga) 5 + VIAT=1)
< inf P
R(Gn) < Sesgfaezs R(Psg) +15| N+1

The interesting property of this estimator, whose exact definition and efficient implemen-
tation are discussed in 87| and quickly summed up in Sect. 4.11, is its capacity to find one
particular model in the family which offers a good trade-off between precision (as expressed
by the term infy R(Ps)) and difficulty of estimation (as expressed by the additional term
Cte x |S| /(N +1)). It is called adaptive because it estimates any particular distribution Py
at a good rate without requiring any information about it, and adapts to its complexity.

These theoretical results suggest the following procedure to represent a text 7T:

e Sample an i.i.d. set Z& from the text by repeatedly choosing a position with a uniform

prior on the text invovled.

e Use this sample to train an adaptive context tree estimator which we denote by I@’T.

4.4 Text Categorization

We can now describe a text categorization algorithm. In the classical setting of text catego-
rization a so-called “learning set” of texts is given to the classifier together with the categories
they belong to. The classifier task is to learn from this set a rule that assigns one (or eventu-
ally several) category to any new text. The classifier performance is measured by its ability
to correctly classify texts belonging to a so-called “test set”.

The representation of a text as a conditional probability presented in Sect. 4.3 can be
extended to the representation of a category : it suffices to sample the data used to train the
estimator from any text belonging to the category C in the training set in order to obtain a
representation of the category as a conditional probability Pe.

Comparing a given text :vll to a category representation Pe is naturally done through the

following notion of score:
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Definition 3 For any given text T = xll let Pr(X,Y) be the joint probability distribution on
A* x A defined by uniformly choosing an indezx i in 1,... 1 and setting (X,Y) = (z\1, z).

The score of the category C w.r.t. the text T is defined by:
s7(C) = Bp log Pc(Y | X).

For a given text it is well known that such a score is maximal when P is a.s. equal to

Pr, and is related to the relative Kullback-Leibler divergence through the following equality:
se(T) = —HPr([.)) =D Pr(.[)[|Pe(-].),

where 1 denotes the conditional Shannon entropy:

1
H(P(.].) = (Zy) Ple.y)log gy

This equality shows that comparing the scores of two different categories w.r.t. to a given
text 7 is equivalent to comparing the relative Kullback-Leibler divergence of the corresponding
representations w.r.t. P7. This suggests to use this score not as a universal measure of
similarity between a text and a category but rather as a way to compare two or more categories
w.r.t. a text, in order to remove the influence of the entropy term.

By the law of large numbers it is reasonable to estimate the score of a category w.r.t. a
text by creating an i.i.d. sample Z{ sampled from the joint law P, as explained in definition

3, and to compute the empirical score:

K

. 1 5

5e(T) =% > logPe(Y; | X3).
i=1

The categorization itself should then depend on the precise task to carry out. We present

in the following sections two experiments which involve two different categorizers:

e On the Reuters-21578 collection (Sect. 4.6) we create a series of binary classifiers
corresponding to each category, in order to compute recall-precision curves for each
category. This means that we need to sort the texts in the test set by decreasing
similarity with a given category. This similarity involves the difference between the

score of the category and the score of a “general” category w.r.t. each text.

e On the Usenet database we create a classifier which maps any new text into one of the
predefined category and compute the proportion of misclassified texts. This can simply

be done by comparing the scores of all categories w.r.t. to the text to be classified.
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4.5 Initial Text Processing

The theoretical framework suggests to work on a small alphabet A in order to get good
estimates for the conditional distributions. As a result we decided to use as an alphabet the
set of 26 letters used in the Latin alphabet plus an extra symbol noted (), resulting in an
alphabet of size 27. The preprocessing of every text in the following experiments consists in

the very simple following procedure:
e Each letter is turned into small cap;
e Each ASCII character that is not a letter is transformed into 0;
e Series of consecutive ) are transformed into a single (.

Starting from a series of ASCII characters this procedures produces a series of letters of

the 27-letter alphabet, with the particularity that two () are never consecutive.

4.6 Experiment on the Reuters-21578 Database

The Reuters-21578 collection! is a dataset compiled by David Lewis and originally collected
by the Carnegie group from the Reuters newswire in 1987. The “ModApte” split is used to
create a training set of 9603 documents and a test set of 3299 documents. A common way to
evaluate a classification algorithm on this dataset consists in building a separate classifier for
each category with a “precision” parameter which can be varied to estimate the precision /recall
curve. For a given category precision is the proportion of items placed in the category that are
really in the category, and recall is the proportion of items in the category that are actually
placed in the category. The increase of one of these variables (by changing the parameter) is
usually done at the expense of decreasing the other one, and a widely-used measure to sum
up the characteristics of the precision/recall curve is the break-even point, that is the value of
precision when it equals recall.

Following this setting a graded measure of category membership for any text can be defined

as follows:
e Compute a representation P¢ for the category.

e Compute a representation I@’g for a general text of the database (i.e. by setting G to be
the whole database).

'Distribution 1.0, available at http://wuw.research.att.com/lewis/
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e Define the category membership of the text as:
me(T) = s7(C) — s7(9).

e Classify the text 7 in the category C if m¢(7) is larger than a threshold 6.
e Adjust the precision/recall trade-off by varying the threshold 4.

As mentioned in Sect. 4.4 it is necessary to measure differences between scores of several
categories w.r.t. a text to obtain a meaningful index. In this case we compare the difference
between a precise category and the general database in order to detect texts which particularly
“fit” to a category.

In order to carry out the experiment the TITLE and BODY parts of each article is used as a
starting text. Following experimental results available in [87] we ran the adaptive context tree
algorithm with 200,000 samples for learning the continuous parameters and 100,000 sample
for selection a tree, with a maximal tree depth D = 9 and a penalty term pen = 3. These
parameters were not further optimize. Table I summarizes the break-even points computed

for the ten largest categories.

Table I: Break-even performance for 10 largest categories of Reuters-21578

Category | B-E point
earn 93
acq 91
money-fx 71
grain 74
crude 79
trade 56
interest 63
ship 75
wheat 58
corn 41

4.7 Experiment on the 20 Newsgroup Database

The second data set consists of Usenet articles collected from 20 newsgroups by Ken Lang
([49]). Over a period of time about 1000 articles were taken from each of the newsgroups,

which makes an overall number of 20017 articles in the collection. Each article belongs to at
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least one newsgroup, and generally to only one except for about 4% of the data set. The task
is to learn which newsgroup an article was posted to. In the case an article belongs to several
newsgroups predicting either of them is counted as a correct prediction. The performance
of the estimator trained on the learning set is measured in terms of accuracy, that is the

proportion of correct prediction in the test set.

Contrary to the binary classification context of the Reuters database the categorizer must
be able to map any new text into one out of 20 categories. In that case it makes sense to
compute the scores of each category w.r.t. to a given text, and to assign it to the category

having the largest score.

For each category we created a random subset of 200 texts to serve as a test set and used
the remaining texts to estimate the model representation. Before running the experiment we
deleted the binaries contained in some messages, and kept the Body part of every message as a
starting text. The adaptive context tree algorithm was run with 400,000 samples for learning
the continuous parameters and 200,000 sample for selection a tree, with a maximal tree depth
D =9 and a penalty term pen = 3. Like for the Reuters experiment these parameters were

not further optimize.

We ran two experiments in order to show how it is possible to influence the representation
by using the prior knowledge that the Subject line might be more category-specific than the
Body part. In the first experiment the Subject line was simply discarde, and in the second
one it was added to the Body and the probability of drawing a letter from the Subject was
ten times larger than the probability of drawing a letter from the Body.

Table II shows the average accuracy obtained on each newsgroup and globally for both

experiments.

4.8 Automatic Text Generation

In order to give a flavor of the information contained in the models estimated to represent
various categories we used them to randomly generate small texts. Table III shows texts
generated from models representing three different categories in the Usenet database. One
can observe that many English words appear, but that many features including stylistic ones
are caught in the models. For instance the level of language looks much higher in the discussion
group about politics (with many long words) than in the group about baseball (which contains

many “stop words”).
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Table II: Accuracy for the 20 Newsgroup data set

Newsgroup No Subject | Subject favored
alt.atheism 81 86
comp.graphics 80 89
comp.os.ms-windows.misc 81 86
comp.sys.ibm.pc.hardware 80 86
comp.sys.mac.hardware 84 92
comp.windows.x 85 92
misc.forsale 73 82
rec.autos 90 96
rec.motorcycles 91 93
rec.sport.baseball 93 94
rec.sport.hockey 95 96
sci.crypt 93 96
sci.electronics 90 94
sci.med 92 95
sci.space 93 95
soc.religion.christian 92 95
talk.politics.guns 88 91
talk.politics.mideast 91 94
talk.politics.misc 70 73
talk.religion.misc 65 73
Total 85.4 90.0

4.9 Discussion
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The Reuters data set is known to be well adapted to classification algorithms based on words

only. As mentioned in [51] and [63] categories like “wheat” or “corn” are efficiently predicted

by testing the presence of a very small number of terms in the text : a simple classifier which

satisfies a document according to whether or not it contains the word wheat has an accuracy of

99.7% on the corresponding category. In such a situation our result are not surprisingly pretty

bad, and much worst than results reported by other algorithms. For classes like “acq” with a

more abstract concept our results are near the average of classical methods based on words

as reported in [50]. In the whole the results we present are worse than results reported for

state-of-the-art classifiers, but are comparable to results reported for naive Bayes classifiers.
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The 20 Newsgroup database is known to be less formatted and many categories fall into
confusable clusters. Even though comparison with other reported results is difficult because
of the non-standardized splitting procedure the performance of our algorithm looks not far
from the state-of-the-art level of accuracy (around 90%).

These results suggest that looking at the words is not the only way to get information on
the semantic content of a text or at least on the category it belongs to. Even though looking
at the distribution of characters is intuitively more related to the style of a text than to its
meaning our experiments show that to some extent this intuition is false.

One positive point in our approach is that no dictionary, stemming algorithm or word
selection procedure is required as a text is just considered as a sequence of letters. This

results in two interesting features:

e It might be a good approach to languages like Chinese or Japanese where the parsing

and indexing by words is less natural and more difficult than in English;

e Once the models are learned the categorization of a text is very quick as no preprocessing

or indexing is required.

4.10 Conclusion

We presented a new way of representing texts written in natural language through adaptive
statistical estimators. In order to have good statistical properties we decided to work on the
character level, which might look very challenging as it is usually considered that representing
a text as a series of words or word stems is the best approach possible. However results
obtained for text classifiers based on this representation suggests that it is still able to catch
semantic contents.

This low-level representation is clearly not optimized for the particular task of text cate-
gorization. Encouraging results suggest however different fields of investigation in the future,

including:

e the development of other representations than the conditional probability of a character

knowing the past, which should be task-oriented;

e the combination of this approach with word-based state-of-the-art algorithms for text
categorization, with the hope that the features used by both approaches be sufficiently

different to generate a gain in performance.
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4.11 Annex: the Adaptive Context Tree Estimator

This annex is to describe very briefly the procedure we follow to build the representation of a
category, that is a conditional probability. The reader should refer to [87] for further details.

The parameters to set are:
e the maximal depth D of the tree models family;
e a penalty term pen which represents the cost of a node.

The algorithm is fed with two independent training sets Z; and Z5 of size N; and Ny
respectively used to estimate the continuous parameters and to select a model. These sets
are used to update counters attaches to each node s € T = Ui';o./li of a context tree of depth

D as follows:

VieA dl= Z 1 (s is a suffix of X and Y =1),

(X,Y)eZ
VicA b= Z 1(sis a suffix of X and Y =1),
(X,Y)EZ,
ng = Z 1 (s is a suffix of X).
(X,Y)eZ,

A functional w is then recursively computed on each node of the context tree, starting

from the leaves and going back to the root:

(

t+1
Ifli(s)=D w(s) =pen+ Zbglog n(:ST—FVH’
yeA
) Ifl(s) <D w(s) =pen+/r\1f1éif(4{2w(js)

JjE

G/i - Z ieN a/i- +1
+ bY — v | log—> JEN s }
y;ct ) gf P) s = Yjen s + A

\
At every step the sons selected in the subset A of the second equation are marked. The
largest incomplete tree model made of marked nodes is then selected as the estimator I@’,

together with parameters (see Sect. 4.3) defined by:

at +1
0(s); = —2——.
(S)Z Nng + ‘A'
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Table ITI: Automatic text generation
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Chapter 5

Iterative recoding for stationary

process estimation

Abstract

We consider the problem of estimating the conditional distribution of the future
knowing the past of a stationary random process using variable-length Markov
models. We propose a recoding scheme whose goal is to “concentrate” the infor-
mation contained in the past string toward the present, in order to make this
information available to the Markov models. We then study two resampling pro-
cedures when a single long realization of the process is observed and compute
corresponding risk bounds for the estimation of the process distribution under a

conditional Kullback-Leibler entropy risk.

5.1 Introduction

Let (T7),,cz be a stationary random process on a finite alphabet A with distribution IP (dTEOOO)
over the sequence space (AZ, B®Z), where B is the discrete o-algebra on A. We consider the
problem of estimating the conditional distribution of the random variable Ty given the infinite
past T-1 = (... ,T_2,T 1) under a conditional Kullback-Leibler risk criterion, using a family
of statistical models where the conditional law of Ty only depends on Tfolo through a variable
number of preceding symbols.

Such variable-length Markov models (also called tree sources) have been widely studied for
various applications including data compression ([67], [89], [91], [90], [68]), stationary process
estimation ([20], [87]), natural language modelling ([88]) or gene finding in DNA sequences

([33]). The main reason for using such models as opposed to fixed order Markov models is

107
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that they enable long past dependencies for some particular past strings without having an
explosion in the total number of parameters.
In any concrete application, however, the maximum number of preceding symbols used to

infer the next one is still limited for at least two types of reasons:

e there are physical limits in the memory capacities of computers and on their processing

speed;

e there are also statistical limits related to the fact that the number of observations is
usually finite, which include the difficulty of estimating every particular model (which
is related to the model dimension) and the difficulty of working with a large class of

models (which is related to the number of models).

As a result there usually exists an integer D such that the class of variable-length Markov
models only consider contexts with at most D characters. There is therefore an incentive
to concentrate as much “information” as possible in the last D characters of the string 7L
which represents the past.

The first contribution of this paper is to propose a recoding scheme in order to fulfill that

goal by changing the representation of the past string. A binary code o is a mapping from

A%- to {0,1}%*-, where Z_ = {...,—2,—1}, which transforms any left-infinite A-ary string
t~L into a left-infinite binary string o(¢~. ) = u~.,. We propose to apply variable-length

Markov models to infer Ty from an encoded version of the past o(T~L ) instead of the original
data T__;o, in order to include more information in the bits used by the Markov models.
The goal of the code o is to concentrate as much information as possible in the last bits

of o(T~]

). This problem can be seen as the problem of coding strings as long as possible

into a fixed number of bits, which is very close to the variable-to-fixed length block coding
issue in Information Theory ([84], [48], [54], [82]). It is well known that the lower the entropy
of the process (T—_1,T_o,...) the larger the compression rate of variable-to-fixed length block
codes and therefore the more interesting it is to recode the original data before estimating a
Markov model. A striking example of a process with low entropy is natural language: it is
known since the first experiments of Shannon ([77]) that the entropy of English is of the order
of 1 bit per letter, even though the size of the alphabet is 27 in its experiments.

In order to build an efficient code o an estimation of the process distribution P(dT=L)
is required. For this reason the estimation scheme proposed in this paper is iterative, in
the sense that the n-th iteration uses a code o™ 1) computed at the preceding iteration to
change the representation of the past string, then applies the adaptive context tree method

(|87]) using the recoded past to infer the next character, which results in a new estimation
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for the process distribution and therefore to a new code o™ to be used in the next iteration.
Even though the idea of coding the past using an iterative procedure can be applied to
virtually any method which estimate the conditional distribution P(Tp |T-L) we decided to
focus on the adaptive context tree method ([87]) because risk bounds with respect to the
conditional Kullback-Leibler risk are easily obtained for this method (Theorem 12). A similar
idea of iterative recoding is explored by Catoni in [21] in the context of density estimation by

adaptive histograms.

The second contribution of this paper is to study two different sampling schemes which
can be used when the data available are not a series of independent and identically distributed
process realizations, but rather a single long realization of the process. Using basic concen-
tration results for the empirical measure of mixing Markov chains we study two different
bootstrap schemes to draw samples from the realization of the process and prove risk bounds

for the adaptive context tree method in this framework.

The paper is organized as follows. The iterative recoding scheme is presented in Sect. 5.2
and risk bounds are computed for the adaptive context tree method based on the recoded
data when i.i.d. process realizations are available (Theorem 12). In Sect. 5.3 and 5.4, two
bootstrap schemes are presented in order to draw samples when a single realization of the
process is available, and risk bounds for the estimation based on these schemes are computed
(Theorems 13 and 14). Sect. 5.5 recalls some facts about the adaptive context tree method
([87]) and Sect. 5.6 contains a basic proof for the concentration of the empirical measure of

a mixing Markov chain which is used to study the bootstrap schemes in Sect. 5.3 and 5.4.

5.2 An algorithm based on iterative recoding for i.i.d. process

observations

In this section we present an algorithm for estimating the distribution P of a stationary process
(T) ez on a finite alphabet A using an iterative recoding scheme. We write PT-L) €
MY (AZ-) (respectively P(dT?°) € MY (AZ+)) to denote the probability distribution of
left-infinite (resp. right-infinite) sequences.

We describe an iterative procedure in order to estimate alternatively P(dT9°) and P(dT—L).
After each iteration the procedure leads to a distribution ((_i(deo ) € MY (A%+) (alternatively
6(dT__§o) € ML (AZ-)) which is used in the following iteration to estimate a more precise
distribution @(dT__(}O) (alternatively 6(dT1°°) ).
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5.2.1 Description of one iteration

Let us describe an iteration which results in an estimation of a forward probability @(deo)
We will call this iteration a forward iteration, while the next iteration will be called backward.
We therefore suppose that we start with a backward probability measure @(dT__olo) which
results from the previous backward iteration. For the first iteration we can just consider
@(dT:;o) to be uniform.

Construction of a code to represent T~ L

Let d € N (the “code length”) be an integer chosen a priori for this iteration. Let A* = |2, A°
be the set of finite A-ary strings. For any finite or left-infinite string u and finite of right-
infinite string v we write uwv for the concatenation of the two strings. A string u € A* is said
to be a suffix of a finite or left-infinite string v if there exists a string w such that v = wu.
A complete suffix dictionary (or complete suffix tree) B for the alphabet A is a finite set of
strings 1<_) = {s1,...,8} C A* such that no string s; is the suffix of any other string s;, and
such that any left-infinite sequence t:cl,o € AZ- has a suffix in 5, which we write 5(t:éo)
Any complete suffix dictionary with less than 2¢ elements can be mapped to {0, 1}¢ by simply
numberlng the elements of D in binary. If we call y : D — {0,1}¢ such a mapping then
o =x0 D is called a code. Hence a code o maps any left-infinite A-ary string ¢~ 1 € A%-
into a binary strmg of size d.

For any s € D let us write IF’( ) for the probability that 5(Tj§o) = s. If x is a one-
to-one mapplng from D to X(D) then the distribution of the code in {0 1}¢ is equal to
{P(s), s € D} Therefore the entropy of the code, i.e. the entropy of D( 1), is maximized
when this distribution is uniform. If we consider the entropy as a measure of information this
means that the code which catches the most information is obtained with a dictionary 73 of
size 2¢ such that the distribution of {P(s) : s € 5} be closest to the uniform distribution in
a Kullback-Leibler entropy sense. This fact is well known in Information Theory and justifies
the Tunstall code ([84]).

In our case however this “ideal” suffix tree can not be build because the distribution P is
unknown. A way to overcome this issue is to use the distribution Q(7"_, ) to approxunate

P(T-1), and to chose the code corresponding to the largest complete suffix tree D such that:

— — d
Vs € D, Q(s) =27
Let us now define this operation more formally. For any left-infinite string t = t:(l,o € A%,
let
7(t) = def sup{r eEN: V' <r, mln(@(yt1 L) > 2741,
ye
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and

r = sup 7(t),
teAZ-

— 1 «— 1 —
with the convention that Q(y¢; ") =1 and Q(yt, ") = Q(y).
F
For any k € N let Dy C A* be defined as:

T ode _ _
D E {1zl s 17k €AY,
Then the following holds (the proof is postponed to section 5.2.4):

Lemma 10 o 7 < 271
A -1

— —
e For any k €N, Dy is a complete suffiz dictionary, and |Dy| < 2¢.

In other words, 519 is the largest complete suffix dictionary made of strings of length at
most k£ and whose probabilities under @ are at least 279, Note that for £ > r the Bk’s are
all equal to ET. For each k € N the number of elements of Ek being less than 2¢ they can
be encoded on d bits, i.e. mapped into {0,1}% in such a way that two different words have
two different codes (for practical reasons one might use arithmetic coding, in which case the
number of bits required to code a word could be d + 1 see |29, P 104]). Let us denote by
Xk - Dk — {0,1}¢ this code for k£ € N, when we requlre Bk = Xk(Dk) to be a complete suffix
dictionary on the binary alphabet {0,1}. Hence Bk c UL ,{0,1}? C {0,1}*. We also require
that xx = x» for k > r.

Forward estimation using adaptive context trees

Let ¥ denote the |A|-dimensional simplex:

5 %/ {ee 0,14, > 6() }

teA

%
and for any binary complete suffix dictionary B C {0,1}* let:

These notations are useful to define a set of conditional distribution indexed by a binary

— —
complete suffix dictionary B and a parameter 6 € O(B) as follows:

g €
Vel e (0.1} Vi e A, Qg (lamk) Yoy, (to),
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where E( _so) denotes the element of E which is a sufﬁx of z_L .

For any two complete suffix dlctlonarles D1 and Dg on a finite alphabet We say that ’D1
is a sub dictionary or sub-tree of D2 and we write D1 < D2 if for any s; € Dl there exists
S9 € D2 such that s; is a suffix of s9. For any k € N let us consider the set of binary complete

—
suffix sub-dictionaries B < By and the corresponding set of conditional distributions:

—(k) . — — < — = —
{G5otal =) =G, (0 Ba®it)) - B<Boeoib) .
—(k) 1 1
Note that Qi »(to |tZ4) only depends on t_,.
-

Suppose now that we are able to draw a forward regression sample (X;,Y;);=1,... n inde-
pendent from the previous iterations, independent and identically distributed according to
P(dT~}) x P(dTy | T=}). Such a sample can be obtained through N independent observation
of (T™)%,)._, , by setting:

—

X, =1%...7%

, =1

%
Alternatively we would draw a backward regression sample (X;,Y;)i=1,... v during a back-
ward iteration i.i.d. according to P(dT]) x P(dTy | T]) which could be obtained through N
i.i.d. observations of ((T(i)){))izlm ~ Dy setting:

—

X; =179...19,
, =TO.

Let now
xn = log(N + |Al),

1 lo lo
By = (\/1—(XN—1) (2_ g)@v) ng_1>
xn —1 XN XN
v/2loglog N

N-rtoo log N

and

—(k) —
For each k € N we define Q (Y | X) to be the adaptive context tree estimator at inverse
—(k) — — —
temperature By (see section 5.5) to aggregate {Q%5 (Y |X) : B < By, 6 € ©(B)} on the
«—
basis of the forward regression sample (Y;, X;);=1,.. n. Note that we just need to compute

—(k) k) =)
Q forke{l,...,r}andsetQ =Q fork>r.
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%
Finally we define a new forward measure Q (dT(°) € ML (A%+) by:

k .
— —(i-1) .
Vk e N,vib € Ak, Q (t’f) =T[Q ~@le™).
i=1
%
This terminates the description of a forward iteration, and the forward measure Q(d77°)

can then be used to start a backward iteration.

5.2.2 Performance of the forward estimation

The quality of an iteration should be judged according to the difference between 6(dT1°°) and
P(dT7°). As @ will be used in the next iteration as a coding probability a natural way to
measure this difference is by the Kullback-Leibler divergence between P and @ defined for
strings of length n € N by:

R (P.Q) = 3 Pp)iog L.

teAn Q1)

An other useful measure is the conditional Kullback-Leibler divergence, defined by:

N n—1
m (P.0) = 3 pupog i),
i St 1477

These two measures are related to each other by the formula:

n
an E ;.
i=1

Using these definitions the following holds:

CN:<\/2ﬁ?+ |A|—1>2(1+%).

_),
The measure Q resulting from a forward iteration satisfies, for any n € N :

Theorem 12 Let

.
- —(n—1)
Er,(P,Q) < min inf |r,(P,Q5, )+ C]§\|[B| ’
B<Bn-10c0(B) ’
and X
— n L) ool
ER,(P,Q) <Y ¢ min inf [ri(P,Q5, )+ zg\\[ ARy

— —
i=1 | B<Bi_10€0(B)

where the expectation is taken with respect to the (Xi,Yi)Z-e{l,___,N} drawn according to P.
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The proof of this theorem is postponed to section 5.2.5.

5.2.3 Remarks and example

The effect of the recoding should be to take into account long past strings with high probabil-
ities rather than shorter past strings with very low probability. A typical application where
this procedure could improve the adaptive context tree or any fixed-order Markov model is
when the marginal distribution of many finite strings is almost null, in which case they would
be “discarded” by the recoding procedure. In natural language, for instance, many series of
letters or of words never appear.

An other advantage of this recoding procedure compared to adaptive context trees ([87]) is
that the code can be chosen to be binary, even though the variable to be predicted might belong
to a large set A. As a result the estimators can be computed explicitly and efficiently (see
section 5.5.2), while working with A-ary trees leads to approximations (see the implementation
suggested in [87]).

Let us now show on a toy example how recoding enables to represent in an efficient way
“the time spent from the last appearance of an unlikely event”. Consider a binary Markov
chain where the marginal distribution of 1 is low (which represents the rare event) and where
the transition probabilities depend in some prescribed way on the time spent from the last
occurrence of a 1 as long as it is lower than some threshold. The transition can be represented
as a context tree model where D = {sg = 1,51 = 10,... ,8i41 = 8;0,... , 8, }.

If we start the algorithm with a backward iteration and a zero-th order backward estima-
tion (d = 0), and if we note € the estimated value of the probability of 1 resulting from this

iteration then the estimated backward distribution after this iteration is:

Qi) = e -0 (1 — T boi-n),
where § is Kronecker’s symbol.

This backward distribution will be used to select a complete suffix dictionary and encode
it at the beginning of the second iteration. If we chose d such that é2 < 2% < ¢ then it is easy
to see that the selected complete suffix dictionary will be {’Z<_) ={so=1,51 =10,... ,8i41 =
5i0,... , 8.} for some 7/, which is exactly like the tree used to define PP up to the difference
between 7 and 7/. Recoding this tree will result in a representation where different context
will exactly correspond to different time since the last occurrence of a 1. In other words the
information contained in the d bits of the recoded context corresponds to a phenomenon which
is at a position 27 in the original past sequence (this information being the last occurrence of

a rare event in this example).
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5.2.4 Proof of Lemma 10

For any t:})o € A%~ consider the smallest complete suffix tree containing t:;( " By definition
of #(t) the probability of each leaf of this tree is larger than 27¢, and it contains (|.A| — 1) #(¢)+

1 leaves. As a result,

(Al =D 7)) +1) x 274 < 1,

which proves the first point of the lemma.

F
Let us now show that D, is a complete suffix tree. Obviously any ¢t € A%~ has at least one

— —
suffix in D,., namely t:;(t). On the other hand if s € D,. then s = t:}”(t) for some t € A%-. By

— —
definition of #(2), Q(s) > 2~ and there exists a z € A such that Q(zs) < 27¢, and therefore
—
7(t's) = s for all ' € A%?-. This shows that s is the suffix of no other element of D, which
(_

proves that D is a complete suffix dictionary. Moreover, as

Y Q) =1,

—
wEeDy

(_
it follows that |D,| < 24.

— —

Finally it is easy to see that for any k < r, Dj is obtained from Djy; by removing the

leaves at depth k + 1 and replacing them by their parent. This operation conserves the
«— —

property of being a complete suffix tree, and obviously |Dg| < |Dg1|. This finishes the proof

of Lemma 10 by a backward induction on k. [

5.2.5 Proof of Theorem 12

~ —
Let n € {1,...,r + 1} be fixed, and let P be the measure on B,_1 x A defined by:

V(@,y) € By x A, Ple,y) = P((xn 1) (2), 1),

i.e. the image of P by the bijection y,—1 ® Id.

Then one can use (5.7) to compute:
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_ _ 1
Z IED(tl—ln) Z P(to |t1—1n) log — 1
! et tocA Qlto | £1-5,)
1
= Z P(x) Z P(to | z) log S(n—1)
2eD. . tocA Q (to | z)
~ . 1
= Y P)) P(to|a)log v
.’E’E(Enfl foeA Q (to ‘ :El)
1 Cy|B
B R T B D Y Iy — —
B<Bn-10€0(B) \ |, & tocA Q54 (to|z)
1 Cn|B
< _min inf | 7 P(x) ) Plto|)log ——; + ]ﬂf |
B<Bn-10€0(B) \ & to€A Q5,4 (to]x)
1 Cw|B]
< min inf Bt ) 3 Pl | 11,) log iy +=N
B<Bn_16€0(B) \ 4=1 " gn-1 tocA Q5, (toltt,)

The first inequality of Theorem 12 results from this inequality by adding the term

Y PE_,) logP(to |#,),
t9_,eAn

and the second inequality is obtained by summing up the first one fori =1,... ,n. O

5.3 Estimation from the a bootstrap sample of a Markov chain

We suppose in this section that (73,),cy is a stationary irreductible aperiodic homogeneous

D-th order Markov process, i.e. that:

P(dTy | T-L) = P(dTy | T-})-

Under this assumption we study the performance of the iterative scheme presented in the
previous section when instead of i.i.d. samples with distribution P one has access to a single
realization of the process over a “long” time and uses this observation to draw a bootstrap

sample to feed the estimator in each iteration.
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5.3.1 Main result

Let us consider the following forward iteration:

F
e Start with a given backward estimation Q(dT"1) and compute the corresponding dic-

F
tionaries and codes (D, Xk)kefo,... r}-

e Observe a realization of the Markov process on the time interval [1 — r, L], i.e. observe

TIL_T where L is “large”.

e The empirical distribution of strings of length n for n € {1,... ,r + 1} is by definition:

(_
e Draw a sample (X;,Yi)icq1,..., Ny = (Zi)ieq1,...,ny 14.d. with respect to the empirical
distribution I@’L(Z), where X; € A" and Y; € A4 .

(k)

— —
e Use this sample to compute Q (Tp|T ) for k € {0,...,7}, as well as Q(dT¢°) as

described in section 5.2.1
Then the following holds:

Theorem 13 There exist positive constants cl, ca and C such that for any € € (¢c1/L,c2) and

n € {l,...,r+ 1} the following inequality holds:

-
g 1 —(n—1) C~|B
Ern(P,Q) < 1 . min inf | (P, Qz, )+ ]\]f\|r |
T € B<Bn_16c0(B)
2
T 6 7 oB(N + JAA Ty e,
— €

where Cy is defined in Theorem 12.

The expectation in this theorem should be understood with respect to the observation
TE | and the sampling (Zi)ieq1,... N}-

This upper bounds gives some information about the length L of the observed Markov
chain necessary to have an upper bound on the risk of the same order as in the case someone

is able to get i.i.d. samples distributed according to the invariant measure of the Markov
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chain. Indeed Theorem 12 showed that in the case of N i.i.d. samples it is possible to bound

5
the average risk r, (P, Q) by an index 6, () defined by:

F
—(n—1)
op(N) = min inf |7r(P,Qp )+ C]%lﬂ

— —
B<B,_10cO(B)

By choosing € = y/InL/(LC) in the upper bound provided by Theorem 13 we see that
the following asymptotic upper bound holds:

Ery (P, Q) < (1+0<,/MTL))5H(N)+0<,/IDTL>.

As a result one can use N bootstrap samples from the observation of T ,,, with L/InL =

O(6,(N)72), in order to get a risk bound of the same order as d,(N).

5.3.2 Proof of Theorem 13

Fix some n € {1,... ,7 + 1} and let oy, be the random variable defined by:

Py (z)
P(z)

def
ap = sup
zZEA"

-1

This implies that when ar < 1 the following inequalities hold:

P 1
veean 2@ ’
Pr(z) ~ 1—ag
and
P i P
Via,g) e A xca,  EW1D) Py 2 F'y)
Blulz) — BGy) © SpcpnsPulay)
< 1 + aj, '
- 1- aj,
- o«
Using this inequalities we obtain the following chain of inequalities valid for any B < B,_1

—

and 0 € ©(B) :
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—

]EJF%’N (deV)Tn (Pa Q)

P(Y|X)
= g (az) Foraz) 108 Sy ——
Q (Y] X)
PVIX) . O (Y]X)
= Epon (4 Be(az) (10% D) TRy X)) 1)
Q (Y]|X)
1 PYIX) O (V|X)
R A AN ) (l‘)g S TRy 1)
Q (V|X)
1 P(Y|X) | CulB|
N
< Ta, | Beuwn 8 S +
Qs (Y]X)
1 Pr (Y] X)
N A E o LA
T~ oy P9 (4zh) ( a8 v ix) BY[X)
1 P(Y|X)  Cy|B] 2
N ary,
= 1_ag E@L(dZ) log —(n—-1) N + (1 o aL)2'
Qzy (Y]X)

We used the fact that the integrand is non-negative in the third line to derive the fourth
line, and we applied Theorem 12 to P, instead of P to obtain the fifth line.
For any L € N and € € [0,1) this shows that:

Epon (4zp) [1(%56)%(]1”’ @)]

F
% 1 P(Y|X)  Cy|B|
< + EJP log +
2 dz
(1—¢)? 1—e| @ @EQ(Y\X) N

We can now take the expectation with respect to ]P’(TIL_ p) on both sides of this inequality

and observe that the following equality holds for any measurable function f: A" — R:

Bpare VB, (4z)f(Z) = Bpaz) f(2),

in order to obtain the following:

E |:1(aL<e)'rn(]Pa 6)]
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F
2 1 —(n—1)
< € + min  inf rn (P, Q‘gﬁ )+ C]}r\LB| ,

- 2 — €& = —
(1—¢ l—€5 % o)

(5.1)

where the first expectation should be understood as:

Bpary ) Eeen (any)-

Let us now upper bound the probability of the event {ar > €}, using the fact that P is
assumed to define a Markov chain whose transitions depends on contexts of length smaller or
equal to a maximal length D.

In the case D < n the vector-valued process (Y; = X!, .,)._, is itself a stationary ape-

€L
riodic irreductible Markov chain on the space {z € A" : P(z) > 0}. Therefore we can apply
Lemma 13 to obtain that there exist constants ¢; > 0, ca > 0 and C; > 0 such that for any

L € N* and € € (¢1/L, c2) the following holds:

P(og > €) < 2|A|"e 1€,

In the case D > n the process (Y; = X f_ p)icz is a stationary irreductible Markov chain on
the space {z € AP*! : P(2) > 0}. Let p and jif, be its stationary and empirical distribution
from a sample Y. An application of Lemma 13 tells us that there exist constants c3, ¢4 and

C5 such that for any € € (¢3/L,ca):

sup
yEAD+1

For any z € A",

and therefore:
min )
yeAP+ p(y)
As a result, for any € € (¢3/L, c4),

Pr(z)
Pz)

sup < 2|.A|D+le_C2L€2.

zZEA"

The upper bound obtained in the cases D < n and D > n can be summarized as follows:

there exist constants ¢5 , cg and C3 such that for any € € (¢5/L, cg),
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Plag > €) < 2| A|max(mD+1)o=CsLe® (5.2)
—(n—1)
At this point we can observe that the estimator Q defined in the previous section

satisfies:

and therefore:

—(n—1)

mm(P,Q ) <log(N +[A). (5-3)

Theorem 13 is a consequence of (5.1), (5.2) and (5.3). O

5.4 An other bootstrap scheme to estimate a context tree Markov

chain

In this section we present a different bootstrap scheme to draw the sample used by the adaptive
context tree. We propose to replace the iterative procedure studied in sections 5.2 and 5.3 by
a single iteration whose goal is to estimate a forward probability 6(dT1°°), without any prior
knowledge of an estimated backward distribution.

We suppose that (Tp)nez is a stationary Markov process whose transition matrix is of an
unknown context tree type, i.e. that there exists a complete suffix dictionary 73 C A* such

that:

F
Vil € AP, Plto|t25) = P(to] D(t25))-

Moreover we suppose that there exists a constant a > 0 such that:

(_
Vs €D, P(s) > a.

Finally we suppose that we know an upper bound D > max 5 I[(s) and a lower bound
8

274 < q.
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5.4.1 Description of the algorithm
Estimation of a maximal context tree

A realization of the process is observed between times 2 — D and M, where M is a fixed
“large” integer. From this observation the empirical probabilities of all strings of lengths not

larger than D are computed as:

D
vselJA,  Pu(s)="=
=0

Then the following complete suffix dictionaries are computed for k € {0,...,D} (the
proof of Lemma 10 can be easily adapted to show that these sets are indeed complete suffix

dictionaries):

Bk % max {s € CJ.Ai : V2 < 7 < (s), minPy(ysh®)) > 2_d} :
i=1 yeA
In other words Ek is the largest complete suffix dictionary made of strings of length at most
k whose empirical probability is larger than 27¢.
For any k € {0,... ,D}, |5k| < 274 50 it is possible to code Bk with d bits. Let us denote
Xk Ek — {0,1}? the corresponding encoder and gk = Xk(gk) the corresponding set of
binary strings which we impose to form a complete suffix tree.
The following lemma shows that with high probability the unknown context tree 5 is a

F
subtree of Dp :

Lemma 11 There exist two constants C > 0 and My > 0 such that for any M > My :
R —
P (D < DD> >1— D|D|e”“M.

L.i.d. sampling

The goal of the bootstrap scheme is to get i.i.d. samples with a distribution as close as
~ —
possible to P. Pjs being an approximation of P on the suffix trees Dp a natural sampling

— .
procedure on Dp is to sample M new strings i.i.d. from the distribution Pys. Let therefore
M

-
(si)f\il € <DD be such an i.i.d. sample, and let ds; be the number of times the string s

has been sampled:
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One can observe that this sampling is necessary to obtain an random i.i.d design, which
would not be the case if the sample was deterministically set to be the M contexts which
appeared in Té‘f p- In order to obtain an i.i.d. sample to estimate the conditional law of
a character knowing a particular context it is classical to observe a new realization of the
process and select the characters following every appearance of the given context. More

precisely, define the counters:

- M+K
V(s,K) €EDpx N, c(K)= Y &(Ti )
n=M+1
which count the number of times the context s appears in the string TMAEK  and define

M+1-1(s)
the regression sample (s;, Y;)M,, where

(Yi:s;=58) = (Thign: T::el(s) = s and ¢4(n) < dy).

This regression sample is therefore built from (Xyy1,...,Xn1r) where the stopping time 7
is defined by

7 = inf{n : min (cs(n) — ds) > 0}.
s€D

Under the previous assumption, the following holds:

— o«
Lemma 12 If D < Dp then the samples (s, Y;)ieqr,... Ny are i.i.d. with the common distri-

bution:
F
m(ds) @ P(dTy | Dp(T° ) = )
Estimation
—(k)
For any k € {0,... ,D} one can now form the estimator Q (T} |7} ;) using the regression

—(k) — — «—
sample (s, Y;)icq1,.. N} tO aggregate {Q‘E,a(Y | X) : B < B, 0 €O(B)} , as in Sections 5.2
and 5.3.

5.4.2 Performance of the forward estimation

As for the estimators presented in Sections 5.2 and 5.3 the performance of this estimator is
measured in terms of conditional Kullback-Leibler divergence for which the following upper
bound holds:

Theorem 14 There ezxists four positive constants ci, co, C1, Co such that for any € €
[Cl/Ma CZ] :
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-
= —(n—1)
Er,(P,Q) <(1+¢€) min inf [7,(P,Q5, )+ Cn|B|
E P 0cO ) N
<Bn-1 B

F
+1og(01 + 14 (276N 4 DiDjeer )

where Cn is defined in Theorem 12.

5.4.3 Proofs
Proof of Lemma 11

First observe that :

seD
5 _ o-d
<]P’(1n£PM(S) l—a 2 )
sep P(s) a

Let now ¢;, ¢ and C the constants given by Corollary 2. Let ¢ = min((e — 27%)/a, ¢2)

and My chosen such that € > ¢;/Mj. Then from corollary we obtain that:

— P
1—IP(D<DD> §P<1n£ w (3) <1—e)
SED P(S)

e
< D|Dle M€,

Lemma 11 follows by taking the constant equal to Ce?. O

Proof of Lemma 12

By definition the (s;);e(1,... n} are i.i.d. according to Prr(ds). Conditionally to (s1,...,sy),

there exists a stopping time 7; such that Y; = T, ;. This stopping time can be defined using
. i—1
e(i) = 2251 s (s) by

— 3 .k _ ke _ 7k — .
T = klil]f“/l{ﬂM <kl <...<keu <k : Tlcllfl(si)—kl =...= Tke(i)fl(si)ﬂ =T _y(s)+1 = sz}.

—
By the strong Markov property it is therefore true that conditionally to {D < Dp} :
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P(Yz =’!/|31>--- aSNaYb'" aY’ifl) :P(Tn+1 =y|517"' 73N7T7'1+17"' aTTi,1+1)

-
=P(T; = y|Dp(T°,) = s;).0
Proof of Theorem 14

— o«
First observe that on the event {D < Dp} the following holds:

Vn e NV € A%, Pty [#27Y) = P(tn | Dot (£1)).

~ —
For any n € N let us use the notations P(™) and ]P’S(}) to denote the measures on D,, induced

. —
by P and Pp;. Then the following holds conditionally to Tf\f p forany n € N, B < B, _1:

= :|

BN | (Bar(ds:)oP(dYi | 5:)) [Tn(]P, Q)1(D < Dp)

n— ( | s)
<k N (PG Vidsi)eP(@yi|s) > POU(s) Y Plyls)log iy ——

SE€Dp 1 yeA @ (y| s)
1) (s)
= SBP ( 1)()
s€Dp 1t M\
po—1)( ( | 5)
“Egy (B Vs eP (@i 5:)) D By () ) Plyls)log ——5——
s€Dn s ved 3wl

-
(n-1) )
< sup IED7(8)>< Z PN (s) ZPQ‘” )log — (y| s) +CN\B|

~(n—1) N
$€Dp_1 Ph (s s€Dy_y yeA Qg,a (y )
(5.4)
—(n—1)
where we used (5.7) and the fact that Q (y|s) is the adaptive context tree estimator to

—(n—1) +
aggregate the conditional distributions {QE,a Y]X) : B < Bn 1, 0 € O(B } using an

iid. sample with distribution {271 (s) @ P(y | 5).
For any € > 0 let now €2, be the following event:

—
Qe =< sup = <l+4e€ ﬂ{D%DD}.

segD ]PM(S)

Note that by Lemma 11 and Lemma 13 there exist positive constants My, c1, co, C; and

C5 such that for any M > My and € € [c1/M, c3] the probability of €2 is lower bounded by :



126 CHAPTER 5. ITERATIVE RECODING FOR PROCESS ESTIMATION

e IP()
P(Qe):IP<D<DD)IP sup — <1+¢|D<Dp
s€EDp ]P )

F
Z <1 _ D|D|6—C1M> (1 _ 2De—CQM€2)
pay 2
> 1— D|D|e” M _ oD =C2Me,

From (5.4) we get that for any € > 0 :

%
BN | (Puds:)aP(avi | s:)) [Tn(]P’, Q)I(Qe)]

E

N1 C B

<+o| Y Pl (o) (5) Y P(y|s)log (n(1|) + ]ﬂ['
s€Dn_1 yeA B,0 (y|s)

We can now take the expectation on both sides with respect to P(dT ) and observe

-
that for all s € D, E[P’S\Z) (s) = P(s) in order to get:

(_
—(n—1) C~|B
Tn(]p Q ) + Zj\|[ |

E | (P @100)] < (140

— —
On the other side r,(IP,Q) is upper bounded by log(M + |A|) by definition of Q and
therefore, by (5.5):
— — 2
E | (P, Q)129)] < log(01 + A)) (DDl - 2PeCe).

Summing up these two inequalities ends the proof of Theorem 14. [J

5.5 Annex : the adaptive context tree

We recall in this annex the definition and the main properties of the adaptive context tree

algorithm as defined in [87], and we specialize to the case of binary contexts.

5.5.1 Definition and performance

Let (X,Y) be a r.v. on the space ({O, 1}P x A) with probability distribution P. For any
conditional probability distribution Q(y|z) (which satisfies Yz € {0,1}?, Y yeaQylz) =1)
let d(P, Q) denote the conditional Kullback-Leibler entropy between P and Q:
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IS Y Pla,y)log (:;

z€{0,1}P yeA
F
Let now D be a fixed complete suffix tree included in {0,1}”, and let S(D) be the set of
complete suffix subtrees of D. A natural probability distribution on §(D) is the distribution
of the genealogic trees of a Galton-Watson process where each node has two children with

(_
probability 1/2 and no child with probability 1/2, except when it is a node of D in which case
it a.s. has no child. If we call 7 this probability distribution then we have:

(D) = (1) (# nodes) (1) (# leaves)_|pm7<5|

VD € §(D), =13 5
_ 1 pnD|+1 (5.6)
4D
o1
4Dl

Let now (X;,Yi)icq1,..,nv} be ii.d. drawn according to P. The adaptive context tree

estimator is defined by separating the observation into two sets.

-
e Use (X;,Yi)ieq1,...,k} to build the estimators for each D < D as:

Zap 5y (V1) +
Zép ) +[A]

Qp(y|z) =

e Use (Xj, Y,-)ie{ K+1,..,N} to aggregate those estimator by using a pseudo-Bayesian mix-
ture (the Gibbs estimator):

Qlz) = > p(P)Qp(y|x),
D<D
with
N
p(D)=—n(D) [] Qo(¥i|X)",
i=K+1
where Z is a normalizing constant which ensures that p is a probability distribution and

B is a parameter (the inverse temperature of the Gibbs estimator) smaller than 1/2.
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Let
xn = log(N + |Al),

1 1 1
B = (\/1—(><N—1) (2— OgXN) OgXN—l)
xnv—1 XN XN

v/2loglog N

N->too log N

and

Then it can be shown that if the inverse temperature of the Gibbs estimator 3 is smaller
than Sy then the following holds (see [22] and [87]):

. . 1 1 |Al-1
Ed(P,Q) < f Jd(P, 1 D|¢.
( ’Q)—ﬁgeé%p{ ( ’QD"’)+ﬂ(N_K+1) o8 iy K1) I}

Using (5.6) and choosing:

o VATV +1) — V267
VIA=1[+ /2871

rounded to the nearest larger (resp. smaller) integer if 26! is larger (resp. smaller) than

7

|A| — 1, one finally gets the following upper bound:

o (VT + VA1)
Ed(P,Q) < min inf { d(P,Qp)+ D] (1+%)

D—<"Z; 6€Op N+ 2

5.5.2 Implementation

This formulation leads to an efficient algorithm thanks to a factorization method which we
now describe. Let C C {0,1}? be the set of suffixes of the elements of ’Z<_) C is a tree to any
node or leaf s € C of which several counters should be attached and incremented according
to the observation (Xj, Yi)icq1,... N}

(

K
Yy € A, aJy)zZl(s%manin:y),

=1
N
\VweA by = Z 1(s <z and Y; = y),
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Once these counters have been updated with all observations one can compute the following

variables at each node s € C:

s(y) +1
Vy € A, 05(y) = %,

w(s) = H 0, ()P0 @)

yeA

With these notations one can observe that

VD <D, p(D)= %W(D) IT wis),
se€D

with

Z =Y 7(D) [ ws)
D<D s€D

Z can be computed as Z = () where v is defined recursively on any s € C by:

-
(s) if s € D,
w(s) +7(0s)7(1s) otherwise.

In order to compute Q(y|z) for a given (z,y) one can observe that:
Qlylz) = Y p(D)Qp(ylz),
D<D

and that:
— A
VS <D,  Qply|z)=6bpe)(y)-

As a result, if one defines the variables w(s) for s € C as:

w(s) = w(s)bs(y) if s <z,

(s) otherwise ,

then the following holds:

where 7 is recursively defines on the nodes of C exactly the same way as v is, with w being

replaced by w.
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5.6 Annex: concentration of the empirical measure of a Markov

chain

In this section we prove an elementary deviation inequality for the empirical measure of a
mixing Markov chain using the renewal approach. For sake of completeness we give a full
proof of a precise statement which is used in Sections 5.2 and 5.3, even though the result as
well as the method of proof is very classical in the literature about large deviations of discrete

Markov chains.

5.6.1 Main result

Let (Xy),>; be a stationary irreductible aperiodic homogeneous Markov chain on a finite
state space A, with stationary distribution p. The empirical probability of any state s € A is
defined for any N € N* as:

The goal of this section is to compute an upper bound for the distribution of the maximum
deviation of the empirical probabilities. Let us introduce some notations in terms of which
the main result of this section is stated.

For any s € A let (T}),, be defined as follows:

T =0,
T =inf{n >T;_, : X, = s}, kE>1

Let also
e =Tg —Tp_y, k2>1

It is well known that the (T})),-, are a.s. finite, that the (7;),-, are independent, that

the (7)., are identically distributed and that :

1
p(s)

Moreover it is known that each 7* has exponential moments, i.e. that there exists two

Erf =E7r5 = (5.8)

positive constants A and 7 such that:
V(i k,s) e N2 x A P(1f > k) < Ade . (5.9)

With these notations we can state the following result:
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Lemma 13 For any N € N and € > maxsc 4(1/Npu(s)) the following upper bounds hold:

P(SupﬂN(s) >1+e) Zexp[ 2N€) (1—26)],

s€A N(S)

and

Py <1 -9 < e [0 (- me) (o))

A straightforward consequence of Lemma 13 is the following result :

Corollary 1 If (eny)neN S a non-negative sequence such that:
limy_stoeny =0,
limy 5400 Ney = 400,

then there exists an increasing sequence (Cn)nen such that:

2

li =
N—I>I£oo On Eél}é’tl 4Ay,( )

and such that for any N € N:

s€S H(S)

and

P (inf in(s) <1l- GN) < |.A|e_CNN€?v.
s€s p(s)

We can also state a concentration result for the empirical probabilities of the suffixes of
a context tree. Let (T, )nez be a stationary D-th order Markov process whose transition
matrlx is from a context tree D type, and such that P(¢; |D(t0 )) > 0 for any t; € A and
D(tgoo) € D. We recall here the definition of the empirical probability of a string of length

not larger than D form the observation of T4 ,:

D Zé (Tr?—l—l —I(s ))
Vse | JA,  Pa(s)="=

i=0
Under these assumptions the following holds (see the proof in section 5.6.4) :

Corollary 2 There exist three positive constants c1 , ca and C such that for any N € N and
€ € (¢1/N,c3) the following holds:

A~

IFDN (S) .
Ps) |

(_
P [ sup > € §2D|D|e_CN€2.
—

seD
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5.6.2 Proof of Lemma 13

Let us first introduce some notations:

Vz € R, [z] =inf{n € Z:n > z},
Vz € R, [[z]] =inf{n € Z:n > z}.

Note the following inequalities which will be used several times in the sequel and which

hold for any z € R:

z <[r] <z +1,

z <[[z]] <z+1.

For any € > 0, N € N* and s € A the following events are equal:

GRS {25 9> Nu( )(1+e)}

p(s)
= {Tivuaeen <N

[Np(s)(1+6)]
= Z 77 <N .
i=1

As a result the following holds for any (A\g)sea € (RT)A:

fin(s) [ [Npu(s)(1+€)]
P(sup ) >1+6>:]P sup | N — Z 771 >0

seA M s€A im1

[ [Np(s)(1+€)]
=P |supexp [ As | N — Z T >1
s€A i—1
[Npu(s)(1+€)]
< Esup |exp | As | N — Ty
s€A i—1

[Nu(s)(1+€)]
< Z]Eexp As | N — Z T
i=1

seA

[Nu(s)(1+6)]
< Z [e)\sN H Ee—/\s'r ] .

seA
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In order to upper bound this term we can use the following lemma whose proof is postponed

to section 5.6.3:

Lemma 14 For any (i,s) € N x A and X € (—o0,7y) the following holds:

+ AN?
pls)  v(y=N1"
This lemma enables us to resume the computation and get the following, after observing
that v+ As > «y for any s € A :

Ee*™ < exp

P (sup v (s) >14 e)

s€EA N(S)
S exp |- [Nu(s)(1+e)] 2 A[Np(s)(1 +¢)]
S seA P |: AS ( H(S) N) * )‘s 72

Observe that for any s € A :

[Nu(s)(1 +¢€)]
p(s) p(s)

As a result the term in the exponential corresponding to a particular s is minimized for
A defined by:

v INpE) (L + o) u(s) " - N

’ 2A72[Nu(s)(1+€)]

and choosing A\; = A} for all s € A leads to the following:

i (s) [ (p(s) 'TNp(s)(1 + 9] —N)°
P (sun i = 1+¢) S 2P | T AN+ o ]

_ N2€2
< Z exp | 4Ay 2 (Nu(s)(1+¢€) + 1)]

s€A
<) exp|— X|1l—e— —
< L ity Niu(s)
[ N62’)’2
< — —
< Zexp |~ TA00s) x (1 26):| ,

s€A
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because € > (Nu(s))~! by hypothesis. This proves the first inequality stated in Lemma 13.

In order to prove the second inequality we proceed the same way and write:

an(s) . .
{u@)<1 } {2:5 ) < Nu(s)(1 ﬁ

={ﬂmmwu%m?>N}

[Nu(s)(1=e)]]
= Z 3 >N }.
i=1

As a result the following holds for any (Ag)sea € [0,7)4

P(mﬂmf)<1—0

[ [TNu(s)(1=€)]
=P [su w—-N|>0
SEE zz:;

[TNp(s)(1-€)1]
< Esup |exp | s s — N
s€A i—1

[TNu(s)(1=€)1]
< ZIEexp As Z 7 — N

s€A i=1

[TNu(s)(1=€)1]
< Z o NN H B TE

s€A i=1

< Y owp [ (- (RO A% )1 -

oy p(s 77 =)

By hypothesis € > (Nu(s))~! for any s € A and therefore :

[N =T
N e o el
> 0.

The term in the exponential corresponding to the state s € A has the form:

As) = —ads + b—25—
fs) =—a o
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with

e HNM(S)((l) N
u(s

b= %HNMs)(l 9.

a >Oa

The function f is differentiable on [0,7) and:

Fny 2y — A
f()\)——a+b)\(’y_)\)2.

As a result a minimum is reached at

and the minimum is equal to:

) = (ViTa-vb)

2
yN g
—A[[Nu(s)(1 = )11 WH AlTNu(s) 1= )11 Au(s) _1)

2

2
yN Y
< —ANpu(s)(1 —e€) (\/1 + ANu(s)(1—e)+ A Ap(s) 1)

As a result we obtain the following upper bound:

() <1 = Ko 255 w090 (-

which is the second inequality stated in Lemma 13. O

135
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5.6.3 Proof of Lemma 14

For any (i,s) € N x A let us use the notation 7 = 77. For any A € (—o0,7) the random

variable exp(A7) — 1 — At is non-negative and therefore:

]Ee)‘T—1—)\1E7'=/OOOIP’(6)‘T—1—>\7'2u)du.

After the change of variable u = exp(Av) — 1 — Av, we can use (5.9) and the fact that
Alexp(Av — 1)) > 0 in order to get:

]EeAT—l—)\]ETz)\/ ]P’(TZU)(@M’—l)dU
0

o0
< A)\/ e " (eM — 1) dv
0
AN?
< 2
Yy —A)

Using (5.8) it follows that :

A2
Yy = A)
A AN2
= oxp (u(S) o A)) ’

which concludes the proof of Lemma 14. O

Ee <1+ \Er +

5.6.4 Proof of Corollary 2

For any finite string s € A* let g(s) denote the string obtained after removing the last letter
— —
of 5, i.e. g(st) = si"t and g(A) = \. For any set B C A* let T(B) be the smallest complete
— —
suffix tree such that for any s € B there exists a s’ € T(B) which satisfies s < s'.

Let now :

1=0

-
where D is the complete suffix tree model used to define the stationary process (Ty,)nez.
Corollary 2 is now a direct consequence of the following lemma and of Lemma 13 applied

&
to the Markov chain (Dy(T",))nez :
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%
Lemma 15 Let S, = Dy(T",). The process (Sp)nez is a stationary 1-order Markov chain

e
on the space Dy, and:

— «—
D, < D x Dl.

Proof of Lemma 15:

The following properties are easily checked:

— — —
e If B is a complete suffix tree then 7 (g(B)) C g(B) .

— — —
e If (B;)icr is a finite collection of complete suffix trees then T (U;c; Bi) C U;er Bi-

+

F
o If (B;)icr is a finite collection of sets then T (U;c; Bi) = T(U,er T( i))-

As a result the following holds:

and therefore

Dy < Zlg D)| < D x |D|.

-
Let us now show that (Sy)nez is a 1-order Markov chain. For any snt1 € D, there exists
—
i € [0, D — 1] such that sp11 € g'(D). As a result g(sp+1) € g”’l( ) and there exists s € D

such that g(sp4+1) < s. Therefore the following events are equal:

{9( n+1) oo} { Snt1) < 5g (Xfoo)}
- {g( n+1) < S }

By definition, S, 1 < 7"} and therefore g(Sy+1) < T",, almost surely. Hence g(Sp+1) <

Sp a.s. and therefore:
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P(Sn+1 = sn41| ST = s1) = 0if g(snt1) A sn-

Oun the other hand if g(sp4+1) < s, then there exists a € A* such that s, = ag(s,+1),
F
and therefore there exists b € A such that as, 1 = s,b. Applying Dy(.) on both sides we get

F
Sp+1 = Dy(snb). We can now write for any b € A:

%
P(Sps1 = Dy(sub) | S

IS
g

OO:s

This shows that in all cases P(S;4+1 = $p+1 | S 00 = 5% o0) = P(Sn+1 = Sn+1|Sn = sn) and
therefore that S, is a first-order Markov chain. It is obviously stationary because (T},)nez is

stationary itself. [
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