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Adaptive Context Trees and Text Clustering
Jean-Philippe Vert

Abstract—In the finite-alphabet context we propose four alter-
natives to fixed-order Markov models to estimate a conditional dis-
tribution. They consist in working with a large class of variable-
length Markov models represented by context trees, and building
an estimator of the conditional distribution with a risk of the same
order as the risk of the best estimator for every model simultane-
ously, in a conditional Kullback–Leibler sense. Such estimators can
be used to model complex objects like texts written in natural lan-
guage and define a notion of similarity between them. This idea is
illustrated by experimental results of unsupervised text clustering.

Index Terms—Adaptive mixture of models, context-tree
weighting method, mean Kullback risk, text modeling.

I. INTRODUCTION

CONSIDER the problem of measuring the similarity be-
tween two long strings in the finite-alphabet context, e.g.,

two English texts or two DNA sequences. A possible approach
to cope with the impossibility of comparing them directly con-
sists in replacing the initial strings byrepresentationseasier
to handle and compare. For this purpose, finite-order Markov
models are widely used to catch statistical information from
the initial strings and represent them. A trivial example is the
so-calledvector-space modelintroduced by Saltonet al. [1] for
indexing texts by the statistical distribution of words they con-
tain, which can be seen as a zeroth-order Markov model. Larger
order models appear for language models, e.g., in speech or op-
tical character recognition systems (see a survey in [2]),

The order of any Markov model is usually limited because
the number of parameters to estimate increases exponentially
with it, while the initial strings have finite length. On the other
hand, these strings are supposed to have long-range correlations,
which might be better caught by models of high order.

Our contribution in this paper is to present and study several
alternatives to fixed-order Markov models, and show through
an experiment of unsupervised text clustering how to use our
results to measure similarities between English texts. More
precisely, we consider a larger class of Markov models in
which the conditional distribution of the next symbol depends
on a variable number of preceding symbols. Hence a particular
model is a parametric family of conditional distribu-
tions . Such models are interesting
because they can catch long-range dependencies on some
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particular strings without having necessarily an exponentially
growing number of parameters. However, it is unknowna priori
which model to use when confronted with a given text or DNA
sequence: we show in the sequel how to use “aggregation rules”
among models, i.e., methods of combining several models as
opposed to selecting a particular one, to build an estimator
whose risk approaches the risk of the best conditional density
in the family of models considered (Theorems 4 and 6), in the
sense that

(1)

where denotes the distance of a conditional density with the
true unknown density in a Kullback–Leibler sense (see (2)),
and should be as close as possible as the minimax
risk for the model . The bound (1) isuniversalbecause it is
obtained without restrictive hypotheses on, in particular
is not required to belong to any model. Yet if it does it can
be approximated at the minimax rate in the model considered
(with a loss in the constant), as if this information were known
a priori: in such a case, we say the estimator isadaptive.

There are many connections between our results and uni-
versal coding as defined by Davisson [3], which consists in
building a probability on the set of strings of lengththat ap-
proximates simultaneously every probability of a predefined set
as increases, in the Kullback–Leibler distance sense. The lit-
erature about universal codes is very rich, and many authors
have proposed solutions to problem (1) in that case with
being replaced by (including Rissanen and Langdon [4],
Davisson [5], Ryabko [6], Willemset al.[7], Feder and Merhav
[8], and Barronet al.[9]). The link with our concern in this paper
is that the redundancy criterion of universal coding is the sum of
the expected distances we consider for string sizes growing from

to . In spite of this, results are difficult to adapt because a
control of the Cesaro mean of a sequence does not always lead
to a control of the sequence itself: We overcome this issue of
universal predictionby using statistical aggregation methods.

This paper is organized as follows. After setting up the statis-
tical framework and presenting the family of Markov models in
Section II, we study two estimators for the parameters of a single
model in Section III, and prove universal bounds on their risk.
In Section IV, we build a probability on the family of Markov
models defined earlier, and propose two aggregation methods
with universal bounds in Sections V and VI. Each of these two
methods can be used to aggregate each of the estimators studied
for a given model, therefore resulting in four possible global es-
timators. In Section VII, we show how using a data-dependent
prior on the models improves the estimators, and in Section VIII
we propose an efficient implementation in the spirit of the con-
text tree weighting algorithm [7]. Finally, Section IX is devoted
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to presenting some experimental results. The estimators studied
in the paper are used to represent texts written in natural lan-
guage, and an unsupervised text clustering experiment based on
this representation is carried out.

II. DEFINITIONS AND FRAMEWORK

Fixed throughout this paper, let be an integer. Con-
sider analphabet, with size and
whose elements are calledletters. A string is a finite concate-
nation of letters which can be written as
with for . is called thelength
of the string and written . The empty string has length

. The set of all strings is

The concatenation of two stringsand is written . We say
that a string is a suffix of the string

if and for .
The empty string is a suffix of all strings.

For any random variable on a finite space with proba-
bility distribution we use the notation .
The expectation of a measurable function with re-
spect to is denoted by or if there is
no ambiguity.

A. Statistical Framework

Let be an integer, fixed throughout this paper. We consider
the measurable product space , where

, and and are the discrete sigma algebras on
and . We address in this paper the issue of estimating the con-
ditional distribution of a letter given a string
based on a series of observations. In order to model the random
nature of and we suppose that a family of unknown prob-
ability distributions is given

and we let

be the canonical process.
One can, for instance, think of as , with being

a probability on , if the observations are
supposed to be independent and identically distributed (i.i.d.).
However, we will only use the weaker assumption that is
exchangeable, i.e., that for any permutation of
and any

where is the exchanged process

An estimator for the conditional probability of
knowing maps any observation to a proba-
bility distribution on . The performance

Fig. 1. Representation of the tree modelf�; a; ba; b; c; ac; bcg.

of an estimator is measured in terms of the Kullback–Leibler
divergence as follows:

The observation itself having a random nature, the perfor-
mance of the estimator is judged according to its expected di-
vergence, which we call therisk of the estimator

(2)

This risk is theconditional Kullback–Leibler divergence(also
called conditional relative entropy, see, e.g., [10, p. 22]) and
plays a central role in universal coding and prediction (see a
survey in [11]).

B. Tree Models

In order to estimate the conditional distribution of let us
consider a family of conditional probability models. As in the
statistical literature, amodel is a family of conditional distri-
butions which are indexed by a parameter ,
where is called thedimensionof the model .

The models we consider are represented bytrees. A tree
is by definition a nonempty set of strings such that
every suffix of every string of be also in . In particular, this
implies that the empty string belongs to . Any tree can be
represented graphically as a graph whose vertices are the strings
it is made of and whose edges link together every string
with its suffix of size . As an example, Fig. 1 shows a tree

when . The parent
of a string is its suffix of size , and its children
are the set of strings of length such that

is a suffix of . Not that a tree might beincomplete, i.e., the
number of children of any string might be different from

or .
We denote by the tree class of memory , i.e., the set of

trees such that for any , .
For any tree thesuffix functional is the

mapping which transforms any string into its longest
suffix that is an element of . If there is no ambiguity on the
tree considered, we will also writeinstead of .
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Example 1: The suffix functional associated with the
tree represented in Fig. 1 is such that and

Any tree can be considered as a conditional distribu-
tion model thanks to the following construction.

Definition 1: Let be a tree and be the -di-
mensional simplex

For any let denote the conditional
probability density on defined by

The tree model is by definition the set of conditional den-
sities .

As a result, a tree model is a model with dimension
.

III. ESTIMATOR FOR A GIVEN TREE MODEL

Let us first consider the case when a tree model is
given and one wants to use the observations is order to es-
timate a parameter such that
is “small.” We propose two estimators for this problem: the first
one is the well-knownLaplace estimatorfor which we gener-
alize known universal bounds (Theorem 1), while the second
one is a new estimator for which we prove a better bound when
the support of the conditional distribution is smaller than the
whole alphabet (Theorem 2).being fixed, we will use the no-
tation instead of for the suffix functional associated
with .

Remark 1: The problem of parameter estimation for an i.i.d.
source on a finite space is well known in information theory.
It seems that first the method was considered in [12]; then
the problem of optimal estimation was considered in [13] and
an asymptotically optimal method was suggested. Recently,
new results about exact prediction were found in [14]. The
results that follow are nonasymptotic (as opposed to [13]) and
remain true if the samples are not i.i.d. but only drawn from
an exchangeable distribution. Even though the estimators we
study are not asymptotically minimax (as opposed to [13]) the
nonasymptotic upper bounds we obtain are of the order of the
minimax risk.

A. Laplace Estimator

For any let us introduce the random variables

and

(3)

Hence counts the number of samplesin
such that is mapped to by the suffix functional , and

counts the number of samples in that subset such that
.

A node is said to bevisitedby if , and
we denote by the random set of visited nodes, i.e.,

The Laplace estimator is defined by

and results in an estimator which we call theLaplace estimator
for the tree defined by the formula

(4)

The following theorem gives an upper bound for the risk of
this estimator:

Theorem 1: For any exchangeable distribution on
and for any tree the risk of the Laplace estimator

for the tree satisfies

Remark 2: The first inequality of Theorem 1 shows that the
risk bound depends on the design distribution, i.e., on the dis-
tribution of , and, therefore, that the Laplace estimator can
adaptto it.

When is reduced to a single node, this result is proven in
[12] when is a product distribution and in [15] when
is exchangeable. Here we generalize the method of proof of the
latter for a general tree model(see also [16] for a similar result
in the case of decision trees).

Proof of Theorem 1:First observe that for any

A similar computation shows that for any

As a result, the Laplace estimator (4) can be rewritten in terms
of and as follows:
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Observe also that the maximum-likelihood estimator for
is with corre-

sponding log-likelihood

Using the fact that is exchangeable to get the first equality
and the fact that and are invariant under permutations of

to get the second, we can now write

Theorem 1 follows by adding

to both sides of the inequality and observing that
implies .

B. Adaptive Laplace Estimator

In this section, we suppose that is a product measure
with , i.e., are supposed to be
i.i.d. with common distribution .

Suppose that for every the support of the conditional
distribution is known to be a subset
of size , i.e.,

if

otherwise.

In that case, one could replace the Laplace estimator for the
tree by the following estimator which takes into account the
information about the supports:

if

otherwise.

Using a computation similar to the one in the proof of The-
orem 1, it is straightforward to show that this estimator satisfies

(5)

which is a smaller upper bound than the one given in Theorem
1 if for some . However, this estimator requires
prior knowledge of the supports . In case these sup-
ports are not known, it is still possible to observe the size of the
empirical supports given by

Using these observations we define theadaptive Laplace es-
timator for the tree by the formula, ,

if

otherwise

The effect of this modification to the Laplace estimator is to
“boost” the estimated probabilities of letters which have already
been observed. It is easy to check that

which ensures that is an admissible conditional probability
density. The risk of this estimator can be upper-bounded as fol-
lows.

Theorem 2: For any probability distribution on and
, for any incomplete tree model

with

where for any (a precise expres-
sion of is given in the proof in (8)).

Remark 3: Up to the vanishing terms , the upper
bound provided in Theorem 2 is smaller than the upper bound
provided by Theorem 1 for the Laplace estimator by a factor

which is always positive. Therefore, the asymptotic rate of con-
vergence to zero is smaller for the adaptive Laplace estimator
than for the Laplace estimator if for some .
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However, by (5), the corresponding rate of convergence for
the risk of the Laplace estimator in the case is
known is , which is smaller than the upper
bound of Theorem 2 by a factor

This factor can be considered as the “cost” of not knowing
.

Proof of Theorem 2:First observe that if

then, for all , , or . As a result

On the other hand, if then

Therefore, we can compute

with

For any and , let

and

Then, and are binomial variables
and . Let be defined by

Then, for any such that , the expectation of
the empirical support size satisfies

(6)

On the other hand, if then
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and, therefore, for any such that we have

(7)

where we used the fact (see, e.g., [17, p. 587]) that for a binomial

We can now upper-bound the five terms for any such
that . For we write

where (6) and (7) are used to get the last inequality. The terms
and can be taken together

Finally, one can observe that if and
then . This provides an upper bound for the integrand
in and, therefore,

We can now sum up the upper bounds obtained for
and to get

with

(8)

This finishes the proof of Theorem 2.

IV. PROBABILITY ON THE MODEL SPACE

The goal in the rest of this paper is to build estimators which
satisfy risk bounds like (1). For this purpose, we propose to
use aggregation methods introduced by Catoni (the progressive
mixture estimator in [15] and the Gibbs estimator in [18]), both
of which require a prior probability distribution to be given on
the model set. The idea of setting a probability on a model space
is well known in source coding and prediction: besides under-
lying any Bayesian approach it was suggested in [6] and [19] to
obtain nonasymptotic risk bounds and later this idea was used
in many papers (see, for example, [7] and [20]).

If is a probability distribution on a model space then
is calledmodel risk. The choice of is arbitrary,

but has an influence on the performance of the aggregated esti-
mator. Optimizing this choice is impossible without further as-
sumptions on the true probability distributionand the approx-
imation properties of the family of models considered.

In addition to performance the possibility of a fast implemen-
tation should be regarded as a guideline for the choice of a prior
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distribution . For instance, the prior model probability distri-
bution considered in the context tree weighting algorithm [7]
leads to a remarkably efficient implementation, which should
be regarded as a fundamental advantage of the algorithm.

Generalizing the idea of the context tree weighting method,
let us define a probability distribution on , the tree class
of memory , as follows:

where satisfies

(9)

The model risk is then linear with respect to the size of the
model, because

(10)

The prior will be used in the following sections to build
convex combinations of different models. We will obtain partic-
ular upper bounds for the risks with this arbitrary choice (Theo-
rems 4 and 6), but the reader should be aware that any different
choice of prior is possible and would lead to different upper
bounds. We propose to chose a prior which results in a model
risk proportional to because the “parameter risk,” i.e., the
risk of an estimator for the model like the Laplace estimator,
is also linear in (Theorem 1).

The following lemma provides a useful upper bound on the
model risk independent of .

Lemma 1: The family of probabilities satisfies

Proof of Lemma 1:By (9), it is clear that is a
decreasing function of , because for any .
Therefore, this nonnegative series has a limit ,
such that .

For any let

The function is increasing with and , and by def-
inition for any . Therefore, for
any , and

(11)

By decomposing any tree as the root node and
(eventually empty) subtrees one
gets the following inductive relation:

If we introduce the function then this can
be rewritten

It is well known that for to stay bounded when tends
to infinity it is necessary that the equation have a
solution . By (11), this implies that must be equal to
zero for some .

If we now study the function its derivative
is

therefore, is minimum for such that , i.e.,

As a result, the minimum value of is

The necessary condition that for some is
equivalent to , i.e.,

which implies

Lemma 1 now follows from this inequality, the fact that
, and (10).

V. AGGREGATION USING A PROGRESSIVEMIXTURE

ESTIMATOR

In Section III, we presented two estimators for the parame-
ters of every given model : the Laplace estimator and the
adaptive Laplace estimator . In this section, we show how to
aggregate the Laplace (resp., adaptive Laplace) estimators for
various , i.e., build a convex combination of the
(resp., ), by using the so-calledprogressive mixture
estimator, introduced by Catoni in [15]. Instead of selecting one
model and the corresponding estimator (resp., ) as in
classical model selection procedures, this estimator is a mixture
of all the Laplace (resp., adaptive Laplace) estimators.

Let us first describe the construction of the progressive
mixture estimator which aggregates the
Laplace estimators defined in Section III.

An integer is first chosen and the observations
are split into anestimation set and avalidation set

.
For each model , the estimation set is mapped by the

Laplace estimator to a conditional distribution
defined by

(12)

where the latter is defined by (4).
For any let now be the

conditional distribution obtained as a Bayesian mixture of the
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primary estimators with the prior distri-
bution on and the observations , i.e.,

The progressive mixture estimator is then a Cesaro mean
of these Bayesian estimators trained on subsamples of growing
sizes, i.e,

The idea of building a progressive estimator has been pro-
posed independently by Barron [21] [22] and Catoni [15] who
proved the following property.

Theorem 3 (Catoni, [15]):

(13)

The construction of the progressive mixture estimator
which aggregates the adaptive Laplace estimators is exactly the
same as the construction of except that each should be
replaced by .

We can now evaluate the risks of and .

Theorem 4: Let (resp., ) denote the progressive
mixture estimator based on the family of Laplace esti-
mators (resp., adaptive Laplace estimators

) and on the prior defined in Section IV, with
the size of the training being set to

where denotes greatest integer.
For any exchangeable distribution on , the risk

of satisfies

with

Let be defined in as in Theorem 2. The risk of
satisfies

with

Remark 4: The definition of shows that the larger the al-
phabet, the longer it takes to train the Laplace estimators com-
pared with the time it takes to aggregate them with the progres-
sive mixture estimator (i.e., increases with , with limit
as tends to infinity). For a large, the risk bound associated
with any model is very close to , which is the
risk of the Laplace estimator for this model.

Remark 5: The term is the sum of three terms. The
first is the term one would expect if were knowna
priori so that the size of the training set could be better ad-
justed. The second is the loss due to the fact that is not
knowna priori and we decided to take for the value corre-
sponding to the best split for instead of . The third term
vanishes to zero and is the loss due to the fact thathas to be
an integer.

Proof of Theorem 4:Using Theorem 1, Theorem 3, and
Lemma 1 we can write

The function

is minimum on at the point

must be an integer so a good candidate to ensure a risk as
small as possible for is for which we can compute
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The upper bound concerning the Laplace estimator in The-
orem 4 follows by observing that and, therefore,

For the second part of the theorem concerning the aggregation
of adaptive Laplace estimators we follow the same computation
except that by Theorem 2 we get

where is defined by

We now just need an upper bound for where is
chosen as in Theorem 4, which is given by

VI. A GGREGATIONUSING A GIBBS ESTIMATOR

In this section, we present a second aggregation method based
on the Gibbs estimator, introduced by Catoni in [18]. Let us
first describe this estimator to aggregate
Laplace estimators.

As for the progressive mixture estimator presented in Sec-
tion V, the observations are split into two sets and

where is an integer in , and the obser-
vation set is used to define the set of primary estimators

using the Laplace estimators as in (12).
The Gibbs estimator at inverse temperature using the

prior on is now the following conditional distribution:

(14)

This definition shows that the Gibbs estimator can be consid-
ered as a “thermalized” version of both the Bayesian
and the maximum-likelihood estimators. Catoni
studied in [18] this estimator in the high-temperature region

which is equivalent to a deliberate underestimation of
the sample size: to compute the Gibbs estimator, the empirical
distribution of observations is plugged into the Bayes
estimator for a sample of size . The reason to con-
sider high temperatures is that the estimator gains stability with
respect to the empirical process whendecreases (at the limit,
it is constant when ). This property is used by Catoni to
prove a general upper bound for its risk in the spirit of (1), which
takes the following form in the particular case when the primary
estimators are log-bounded.

Theorem 5 (Catoni, [18]):Let such that

If satisfies

then the Gibbs estimator defined by (14) satisfies

(15)

The definition of the Gibbs estimator

to aggregate adaptive Laplace estimators follows exactly the
same construction by replacing everyby .

We can now evaluate the risk of and .
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Theorem 6: Let

Let

and let be deduced from as is deduced from .
Let (resp., ) denote the Gibbs estimator at inverse

temperature (resp., ) based on the family of Laplace
estimators (resp., adaptive Laplace estimators

) and on the prior defined in Section IV, with
the size of the training being set to

where denotes greatest integer (resp., todefined like
with replaced by ).

For any exchangeable distribution on the risk
of satisfies

with

Let be defined in as in Theorem 2. The risk of
satisfies

with

Remark 6: Asymptotically, the upper bound on the risks of
the Gibbs estimators provided by Theorem 6 appear to be worse
than the risks of the corresponding progressive mixture estima-
tors given by Theorem 4 because of the factor . This
is due to the fact that the inverse temperature has to be taken
smaller and smaller as increases in order to prove that (15)
holds. However, the conditions imposed onwhich involve
a uniform bound on the likelihood of the primary estimators
might be very conservative in the particular problem we con-
sider. Therefore, larger values ofmight also ensure the validity
of (15), and the actual performance of this estimator is probably
better than the one proven in Theorem 6 (it is reasonable to think
from the computations in [18] that will work in many
cases).

Remark 7: Even though the risk of the Gibbs estimator is
worse than the risk of the progressive mixture estimator one
might prefer to implement the former because it only involves
the computation of one mixture, while the latter involves the
computation of Bayesian mixtures which are then aver-
aged.

Proof of Theorem 6:The family of Laplace estimators
is uniformly bounded by

Similarly, the family of adaptive Laplace estimator
is uniformly bounded by

We can, therefore, apply Theorem 5 with (resp., ) and
(resp., ) as defined in Theorem 6 to get

and

Using these two inequalities instead of (13) the proof of The-
orem 6 now follows exactly the proof of Theorem 4.

VII. D ATA-DEPENDENTPRIOR ON THETREES

Theorem 1 provides two bounds for the risk of the Laplace
estimator on a given tree: the first depends on the design distri-
bution, i.e., the distribution of , and reflects the property of
adaptiveness of the estimator, while the second does not depend
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on the design law, and is therefore weaker. The aggregation of
these estimators described in Sections V and VI are also distri-
bution-independent because the model risk is chosena priori.

In this section, we present a modification which can be ap-
plied to any of the four estimators studied in Sections V and VI.
It consists in replacing the prior distributionon the set of trees

by adata-dependentprior to aggregate the primary esti-
mators in order to get a better upper bound on the risk, which
depends on the design distribution. This modification should be
especially useful when the design distribution is con-
centrated on a small subspace of , which is, for instance, the
case in natural language modeling (see Section IX).

For clarity, we just show the construction of the estimator
which is the modification of , the progressive mixture esti-
mator which aggregates Laplace primary estimators and is de-
fined in Section V. Let us, therefore, formally define the density

for any .
Let denote the tree (in the sense of Section II-B)

whose vertices are the suffixes of the’s, i.e.,

and let be the graph obtained by removing from
the vertices with only one child and merging the two edges
starting from a removed node (i.e., the edge toward its parent and
the edge toward its single child). Asubtreeof the graph
is by definition any connex subgraph which contains the root
as a vertex.

Example 2: Fig. 2(a) shows the graph when
and the observation is (caba,aacc,cbcc). In that case, the
set of vertices of is ,caba,cc,aacc,cbcc. Two pos-
sible subtrees of are shown on the right-hand sides of
Fig. 2(b) and (c), with respective sets of vertices,caba,cc
and ,cc,cbcc.

Let be the set of subtrees of . For any
the suffix functional is defined in the same way as

when is a classical tree (see Section II-B). For any let
denote the conditional probability distribution

The counters

and

are defined as before by (3). Therefore, the distribution
can also be defined as before by (4).

Let be the distribution on defined by

where is the real number which satisfies

Using this data-dependent prior instead of the data-
independent prior in the definition of (see Section IV)
we finally obtain a modified estimator .

For any tree in recall that denotes the set of
visited nodes of , i.e.,

(a)

(b)

(c)

Fig. 2. (a)T (x ) for Example 2. (b) A treeS, squares on its visited nodes, and
corresponding subtree ofT (x ) (see Example 3). (c) Same as Fig. 2(b) with a
different treeS (see Example 3).

and let be the smallest subtreeof such that for
any , there is an such that is a suffix of .

Example 3: As in Example 2, suppose that , ,
and (caba,aacc,cbcc). The left-hand sides of Fig. 2(b) and
(c) show two trees and in . The squares around nodes on

and indicate the nodes which belong to and .
The right-hand sides of the same figures show the corresponding

and
We can now give an upper bound on the risk of the estimator

:

Theorem 7: Let the size of the training set be the same as in
Theorem 4. For any exchangeable distributionon ,
the estimator using the data-dependent priorsatisfies

(16)

with

Remark 8: For any , is always smaller than
. The upper bound in Theorem 7 is therefore smaller than

the corresponding upper bound in Theorem 4. The difference
can be large in cases when is concentrated on a small
subset of , because in that case is a small subtree of

with high probability.

Remark 9: The Laplace estimator for a given tree requires
no modification because its risk is already bounded in terms of
the number of visited nodes (see Theorem 1). Therefore, only
the prior needs to be modified to become data-dependent.
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Remark 10: Every tree splits the data into
clusters. The number of different separa-

tion of the data by trees in is, therefore,

which is equal to up to the number of trees with unvis-
ited nodes. If we had chosen fora uniform prior on ,
the model risk would have been of the order of .
The idea of computing an upper bound involving such a model
risk instead of a model risk of order (resulting from
a uniform prior) is classical in statistical learning theory (see
[23]), where the numbers and are, re-
spectively, known as theshatter coefficientand theannealed en-
tropy.

Proof of Theorem 7:The random tree is invariant
under permutation of the indexes . As a result, for any
such tree , the distribution is ex-
changeable. In the event that , the prior is
independent of the data and therefore Theorem 4 can be ap-
plied. As a result, the following holds for any and

:

(17)

where is defined in Theorem 7.
For any and , let be the parameter

defined by

where is the longest visited suffix of in . For any
this definition leads to

where is the longest visited suffix of in . But
is by definition a suffix of thus must also be

a suffix of . The largest suffix of in is , which is
by definition a suffix of . This shows that ,
and, therefore,

The parameter only depends on through and, there-
fore, we can integrate this equality to get

From (17), we deduce that for any, , and the following
holds:

Taking the expectation of this inequality with respect to
yields the upper bound in Theorem 16.

VIII. I MPLEMENTATION FOR THEAGGREGATIONUSING A

GIBBS ESTIMATOR

In this section, we show how the estimator

using the Gibbs estimator to aggregate Laplace estimators (see
Section VI) can be computed using a recursive algorithm in the
spirit of the context tree weighting algorithm [7]. The construc-
tion we present can be adapted to the other estimators studied
in this paper.

A. Exact Computation

Let be thecontext treeof depth , and for
every let the following counters be attached to
the nodes of the context tree, i.e., :

is a suffix of and

is a suffix of and

is a suffix of and

The subscripts and refer to the training set and the vali-
dation set, respectively. Using these counters we can define the
following functions attached to each node , and defined
for any subset and :

where

For any and let

Let now be defined recursively on for by
the formula

if

otherwise.
(18)

The following lemma shows that can be seen as a
tensorization of a sum over all subtrees with root.
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Lemma 2:

and the following result gives an effective way of computing the
estimator .

Proposition 1:

Proof of Lemma 2:We prove the result by backward in-
duction on . The property is obvious for by defi-
nition of in that case. Suppose it is true for any
such that , and let a string of length

. Then we get

Proof of Proposition 1: It is easy to check the following
equality for any , , and ,
using the definition of and of the Laplace estimator :

As a result, the estimator can be expressed as follows:

Proposition 1 is a direct consequence of this equality and
Lemma 2.

B. Approximation by Model Selection

The implementation suggested by Proposition 1 using the
functionals involves the computation of a sum over
at every node (see (18)). In real-world applications, the compu-
tation of this sum terms might be computationally too expen-
sive if the size of the alphabet is too large.

As an alternative, one can observe that the estimator is
a mixture of Laplace estimators

and that this mixture should usually be unimodal in the space
of conditional distributions, by construction of the Gibbs es-
timator. As a result, an approximation of is the Laplace
estimator corresponding to the tree with highest posterior prob-
ability, i.e.,

with

(19)

This formulation shows that is obtained by apenal-
ized maximum-likelihoodselection procedure, where the penal-
ization for the log-likelihood of a model is
per node.

The implementation of this model selection procedure can
follow the spirit of the implementation of the following mixture.

• For any subset and let

• Let be recursively defined on by

if

otherwise.

• For every if the nodes in the selected subset
used to compute are marked, then is the largest
tree made of marked nodes.

Remark 11: Another possibility to approximate the esti-
mator would be to use a Monte Carlo Markov chain
simulation to approximate the mixture (see [16] for a discussion
in the framework of decision trees).

IX. EXPERIMENTS AND NATURAL LANGUAGE PROCESSING

APPLICATIONS

As an application for the estimators studied in this paper, we
show here how they can be used to model texts written in nat-
ural language, and give results from a text clustering experiment
based on these statistical models.



VERT: ADAPTIVE CONTEXT TREES AND TEXT CLUSTERING 1897

Fig. 3. Log-likelihood withN = 20 000 for variousK andlog(c )=�.

For a given alphabet , a text written in natural language
(e.g., in English or Japanese) is a string which can be parsed
into a series of letters. One can think of as the letters of
the alphabet , the ASCII symbols set, a dictio-
nary of words, or whatever set of symbols in terms of which
the text can be represented as a sequence with

.
For a given , let be the random

variable obtained by randomly choosing an index
uniformly and setting

For a given , let us consider the statistical experiment that con-
sist in sampling i.i.d. variables according to
this common law. This experiment can be used to train any re-
gression model to infer from , which gives a representation
of the initial text as a stochastic model. Note that the initial text is
deterministic, and that the random nature of the variables comes
from the sampling.

A. Tuning the Parameters

As an example, let us consider the model selection algorithm
described in Section VIII-B. Equation (19) shows that the “cost”
of adding a node to a model is , which is a param-
eter we can try to optimize for a given problem. Note that if we
were trying to compute the actual estimator which is a mixture
of models, for instance using Monte Carlo simulations, two dif-
ferent parameters could be varied: and , which influence

the shape of the prior and the speed of learning from examples,
respectively.

A second parameter can be optimized: , which is related
to the relative sizes of the estimation and the validation sets.

In order to observe the effect of these two parameters, Figs. 3
and 4 show results of an experiment carried out from the text
Far from the Madding Crowdby T. Hardy, which is the file
“book1” of the Calgary corpus1 (used in [24]). The text (in Eng-
lish) was parsed into a sequence of characters using the alphabet

, where represents anything that is
not a letter. The estimator was then trained on i.i.d. samples of
size with varying and , and its
likelihood was computed on a test set made of 5000 new i.i.d.
samples. Fig. 3 shows the per-sample log-likelihood for varying

and , and Fig. 4 shows for clarity purpose the
same curve for being fixed.

For any , the value corresponds to the
classical maximum-likelihood estimator. Negative values corre-
spond to negative penalties and, therefore, favor large models.
Positive values are more natural and correspond to penalizing
more large models than small ones.

For , the likelihoods of the models on the
test set are very low: this is the classical phenomenon of overfit-
ting, that is favored by the negative penalization. In this region,
indeed the selected model appears to be too large for its param-
eters to be accurately estimated. As increases to ,
the performance increases and peaks at a value a bit larger than

1Available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.cor-
pus/.
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Fig. 4. Log-likelihood withN = 20 000 for K=N = 0:7 and variouslog(c )=�.

zero, which corresponds to the optimal penalty for the particular
unknown probability and the particular sizes considered. Larger
penalty values decrease the performance of the selected model
on the test set because its dimension becomes too small. In that
case, indeed, the gain in the variance term due to decreasing the
number of parameters to estimate does not balance the increase
of the bias term which corresponds to the distance between
and the selected model.

Fig. 3 also shows that for a given penalty there exists an op-
timal choice of division between the training set and the valida-
tion set, which corresponds to the balance between training the
Laplace estimators and choosing the best model: it is better to
have a training set a bit larger than the validation set. Naturally,
as the penalty increases, the optimalincreases too, because
increasing the penalty means giving less importance to each val-
idation sample.

B. Comparison with Other Models

Many other statistical models can be used to characterize the
relation between and . In particular, the so-called -gram
models are widely known and used in natural language pro-
cessing to characterize sequences of characters (e.g., for char-
acter recognition purposes) or words (e.g., for speech recogni-
tion purposes). In an -gram model, the distribution of is
supposed to depend on the suffix of length of , with
being fixed.

Thus, -grams are particular regression trees, i.e., complete
trees of depth . The difficulties arise when one wants to

estimate the distributions of from a finite training corpus.
An adaptive approach, as the one described in this paper, is
better at balancing the complexity of the model and the preci-
sion of the estimation which basically depends on the size of the
training corpus.

As an example, Fig. 5 shows the log-likelihood of different
models trained on i.i.d. samples of growing size (between 100
and 10 000) and tested on an i.i.d. sample of size 5 000. The
models tested are as follows.

• -gram models for with classical non-
adaptative Laplace estimators.

• The aggregation using a Gibbs estimator, with classical
nonadaptative Laplace estimators.

• The aggregation using a Gibbs estimator, with adaptive
Laplace estimators.

Following the results of the first experiment, the parameters
for aggregated estimator were set to and

.
This experiment shows that the estimator obtained by aggre-

gation of Laplace estimators is almost as efficient as the best
-gram models for any training set size. It also shows the im-

provement gained with the introduction of the adaptive Laplace
estimator and the adaptive probability on the model space. In-
deed, it is clear that the support of the distributions ofare
often smaller than the whole alphabet (e.g., the character fol-
lowing the letter “q” should almost always be a “u” or a space),
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Fig. 5. Comparison with other models.

and that the strings observed only form a small subset of the
set of sequences of characters.

C. Unsupervised Text Clustering

While the distribution of a letter following a string might have
straightforward applications as such (e.g., for disambiguation
purpose in optical character recognition systems), the estimator
we study can be considered more generally as a way ofrep-
resentinga text because it is able to “learn” various statistical
features very quickly.

As an example, it can be used to define and measure a notion
of distancebetween texts. Indeed, let and be two given
texts that one wants to compare. Using them to generate statis-
tical experiments, it is natural to say they are close to each other
if the model that has been trained to explain the first statistical
experiment is good at explaining the second one, and far from
each other otherwise.

This can be quantified as follows. Suppose each text is used
to generate a statistical experiment on which an estimator is
trained. This generates two models and
which can be used afterwards to compute the likelihood of any
sample . In particular, one can define a pseudodis-
tance between the two texts with the following formula:

(20)

where means the experiment that consists in sampling
i.i.d. pairs from text . This pseudodistance is symmetric
and satisfies for any text .

Let now a set of texts be given. The unsuper-
vised text clustering problem is the problem of grouping these
texts into a number of categories according to their similarities.
Most existing clustering algorithms require a distance-like func-
tional to be defined between any two elements to be clustered,
that can be the pseudodistance defined by (20).

To illustrate this we took a series of eight books from each
of which we extracted five texts, and computed the distance be-
tween any two of the resulting 40 texts (see Table I).

Each text was 12 000 characters long and was used to generate
three files by i.i.d. sampling. The first two files (8000 and 4000
samples) were used as estimation and validation set, while the
third file (5000 samples) was used as a test set to measure the
likelihoods used in (20). The parameter was set to

Fig. 6 is a typical profile of distances between one text (here
the text number 23, extracted from Spinoza’sPolitical Treaty)
and all other texts. It shows that the distance with the four texts
extracted from the same book (i.e., texts 21, 22, 24, and 25) are
clearly smaller than the distances with the rest of the database,
and that it could “recognize” the similarity within the texts ex-
tracted from the same book.

In Fig. 7, we plotted a “o” as soon as the distance between
two texts was smaller than . Clusters corresponding to the
books already appear with this naive thresholding method.
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TABLE I
TEXT DATABASE

Fig. 6. Distance between text number 23 (Spinoza) and the other texts.

One should remark that no dictionary or preprocessing of the
text was used. The usual way of representing a text as a “bag
of words” in the literature about natural language processing
is limited as far as statistical estimation is concerned because
the number of possible words is much larger than the size of
the text itself. On the other hand, we experimented on models
based on characters only which lead to less risky estimations
and encouraging results.

X. CONCLUSION

We presented a family of statistical estimators of a conditional
distribution and proved upper bounds on their risk. The main

characteristic of these estimators is their ability to find a good
tradeoff between the bias of different models and the risk of their
estimation for a given number of observations.

Such estimators are interesting in cases when the “real” law
is complicated, but progressively approximated by models

of increasing dimensions. As an example we considered the
issue of modeling texts written in natural language, for which
classical Markovian models like -grams are limited in depth
because of the size of the training corpus that is needed. In spite
of the simplicity of our models, encouraging experimental re-
sults lead us to believe that important improvement could be
obtained by carefully designing pertinent models for a partic-
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Fig. 7. Similarity between texts.

ular application while keeping in mind the necessity of efficient
statistical estimations.
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