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Adaptive Context Trees and Text Clustering

Jean-Philippe Vert

Abstract—In the finite-alphabet context we propose four alter-  particular strings without having necessarily an exponentially
natives to fixed-order Markov models to estimate a conditional dis- growing number of parameters. However, it is unknaapriori
tribution. They consist in working with a large class of variable- which model to use when confronted with a given text or DNA
length Markov models represented by context trees, and building . . " . ,,
an estimator of the conditional distribution with a risk of the same  S€duence: we Sh_OW in the sequel how t(_) l_Jse aggregation rules
order as the risk of the best estimator for every model simultane- @mong models, i.e., methods of combining several models as
ously, in a conditional Kullback—Leibler sense. Such estimators can opposed to selecting a particular one, to build an estim&tor
be used to model complex objects like texts written in natural lan- \whose risk approaches the risk of the best conditional density

guage and define a notion of similarity between them. This idea is in the family of models considered (Theorems 4 and 6), in the
illustrated by experimental results of unsupervised text clustering. sense that ’

Index Terms—Adaptive mixture of models, context-tree

weighting method, mean Kullback risk, text modeling. A . cy{m
RP(P) S rnE./\/llnge@ RP(P&M) * % (1)

|. INTRODUCTION whereR p denotes the distance of a conditional density with the

ONSIDER the problem of measuring the similarity betrue unknown density’ in a Kullback—Leibler sense (see (2)),
tween two long strings in the finite-alphabet context, e.gand ey (m)/N should be as close as possible as the minimax
two English texts or two DNA sequences. A possible approadik for the model». The bound (1) isiniversalbecause it is
to cope with the impossibility of comparing them directly conebtained without restrictive hypotheses &1 in particular P
sists in replacing the initial strings bigpresentationsasier is not required to belong to any model. Yet if it does it can
to handle and compare. For this purpose, finite-order Markd»e approximated at the minimax rate in the model considered
models are widely used to catch statistical information froifwith a loss in the constant), as if this information were known
the initial strings and represent them. A trivial example is theepriori: in such a case, we say the estimataadsptive
so-calledvector-space modéhtroduced by Saltoet al.[1] for There are many connections between our results and uni-
indexing texts by the statistical distribution of words they conrersal coding as defined by Davisson [3], which consists in
tain, which can be seen as a zeroth-order Markov model. Lardpeiilding a probability on the set of strings of lengththat ap-
order models appear for language models, e.g., in speech ormximates simultaneously every probability of a predefined set
tical character recognition systems (see a survey in [2]), asN increases, in the Kullback—Leibler distance sense. The lit-
The order of any Markov model is usually limited becauserature about universal codes is very rich, and many authors
the number of parameters to estimate increases exponentibliye proposed solutions to problem (1) in that case WitN
with it, while the initial strings have finite length. On the othebeing replaced bjog N (including Rissanen and Langdon [4],
hand, these strings are supposed to have long-range correlatibasjsson [5], Ryabko [6], Willemst al.[7], Feder and Merhav
which might be better caught by models of high order. [8], and Barroret al.[9]). The link with our concernin this paper
Our contribution in this paper is to present and study seveiglthat the redundancy criterion of universal coding is the sum of
alternatives to fixed-order Markov models, and show throughe expected distances we consider for string sizes growing from
an experiment of unsupervised text clustering how to use alito N. In spite of this, results are difficult to adapt because a
results to measure similarities between English texts. Motentrol of the Cesaro mean of a sequence does not always lead
precisely, we consider a larger cladd of Markov models in to a control of the sequence itself: We overcome this issue of
which the conditional distribution of the next symbol dependsniversal predictiorby using statistical aggregation methods.
on a variable number of preceding symbols. Hence a particulaiThis paper is organized as follows. After setting up the statis-
modelm € M is a parametric family of conditional distribu-tical framework and presenting the family of Markov models in
tions{Ps,_, b, € O,, C [R%‘“m)}. Such models are interestingSection Il, we study two estimators for the parameters of a single
because they can catch long-range dependencies on someelel in Section Ill, and prove universal bounds on their risk.
In Section IV, we build a probability on the family of Markov
Manuscript received January 21, 2000; revised February 2, 2001. The m&0dels defined earlier, and propose two aggregation methods
rial in this paper contains research used for the Ph.D. dissertation supervisetth universal bounds in Sections V and VI. Each of these two
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to presenting some experimental results. The estimators studied ba a
in the paper are used to represent texts written in natural lan-
guage, and an unsupervised text clustering experiment based on b A
this representation is carried out. ac
C
bc

Il. DEFINITIONS AND FRAMEWORK

Fixed throughout this paper, lete N* be an integer. Con-
sider analphabet A = {1, ..., a} with size|A| = « and
whose elements are calltgtters A string s is a finite concate-
nation of letters which can be written as= ¢; ;g2 ;- - qo
withg_, € Afori = 0,1, ...,1— 1.1 is called thelength
of the strings and writteni(s). The empty string\ has length
I(\) = 0. The set of all strings is

oo
:=0

The concatenation of two stringsands’ is writtenss’. We say
that a strings = q1_iq2_; - - - qo is asuffix of the strings’ =
@G --qpifl <landg; =¢ ;fore=0,...,1—1.
The empty stringh is a suffix of all strings.

For any random variabl& on a finite spacet with proba-
bility distribution P we use the notatio®(z) = Pr{X = z}.
The expectation of a measurable functibri¥ — R with re-
spect toP is denoted byE p(yx) f(X) or Ep f(X) if there is
no ambiguity.

A. Statistical Framework

Let D be an integer, fixed throughout this paper. We consider

the measurable product spacex Y, 5, @ Bs), where) = A,
X = AP andB; andB, are the discrete sigma algebrasiin

Fig. 1. Representation of the tree modal a, ba, b, ¢, ac, be}.

of an estimator is measured in terms of the Kullback—Leibler
divergenceD(.||.) as follows:

TPN,IBN (z]{\r_17 x]\r)
=D (PN ( z{\r_l, a:N) ‘f:’N ( Z{V_l, a:N))
= Z Py (yN Z{\"—l’ -TN) log I:)N (yN Z;r_lv xN) )
YNEY Py (yn |z 5 an)

The observation itself having a random nature, the perfor-
mance of the estimator is judged according to its expected di-
vergence, which we call theésk of the estimato’y

RPN (PN) :EPN (TPszjN (Zf\f_l’ XN))

r Py T wjv_l r
= Y PGeg il )
2 C(XxY)N N (v 20 )
(2)

This risk is theconditional Kullback-Leibler divergendelso
called conditional relative entropysee, e.g., [10, p. 22]) and
plays a central role in universal coding and prediction (see a

and). We address in this paper the issue of estimating the cottrvey in [11]).

ditional distribution of a letted” € Y given a stringX € &

B. Tree Models

based on a series of observations. In order to model the random

nature ofX andY we suppose that a family of unknown prob-

ability distributions is given
VN eN, Py e ML (X x V)V, (B @ Bo)*N)

and we let
{(X5,

be the canonical process.
One can, for instance, think dfy as P®", with P being

Z)IZZ7 LI].,,N}

In order to estimate the conditional distribution}3§ let us
consider a family of conditional probability models. As in the
statistical literature, enodelm is a family of conditional distri-
butions which are indexed by a parametgr € ©,,, ¢ R,
whered(m) is called thedimensiorof the modeln.

The models we consider are representedrbgs A tree S
is by definition a nonempty set of strings C .4* such that
every suffix of every string @ be also inS. In particular, this
implies that the empty string belongs toS. Any tree can be
represented graphically as a graph whose vertices are the strings

a probability on(X x YV, B; @ B»), if the observations are it is made of and whose edges link together every stsikgS
supposed to be independent and identically distributed (i.i.dwith its suffix of sizel(s)—1. As an example, Fig. 1 shows atree

However, we will only use the weaker assumption tRat is
exchangeablei.e., that for any permutatiom of {1, ..., N}
and anyA € (B; @ Bo)

Pn(ZY € A) = Py ((02)) € A),
wherecs Z is the exchanged process

(6Z)i =Z,0y, i=1 N.

PRI

An estimator Py for the conditional probability ofYy
knowing X y maps any observatiofz;" ', zx) to a proba-
bility distribution Py (.| 22 ~*, zx) on V. The performance

S =1\ a, ba, b, ¢, ac, bc} when A = {a, b, c¢}. The parent
of a strings € S is its suffix of sizel(s) — 1, and its children
are the set of strings € S of lengthi(s’) = I(s) 4+ 1 such that
s is a suffix of s’. Not that a tree might bmmcompletei.e., the
number of children of any string € & might be different from
0 ora.

We denote by p thetree class of memor®, i.e., the set of
treesS such that for any € S, I(s) < D.

For any treeS € Cp thesuffix functionalss: A — S is the
mapping which transforms any string € A into its longest
suffix that is an element of. If there is no ambiguity on the
tree considered, we will also writeinstead ofss.
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Example 1: The suffix functional s associated with the Hencev,(s) countsthe number of sampl&sin 24, ..., Z,
tree represented in Fig. 1 is such that--bac) = ac and such thatX; is mapped tos by the suffix functionals(.), and
s(---bee) = ¢ un(s y) counts the number of samples in that subset such that

=Y.
A nodes € S is said to bevisitedby Z¥ if vx(s) > 0, and
we denote by (S) the random set of visited nodes, i.e.,

Any treeS§ € Cp can be considered as a conditional dlstrlbu—
tion model thanks to the following construction.

Definition 1: LetS € Cp be atree and. be the(a — 1)-di- det
mensional simplex vy (S) = {s € S:vn(s) > 0}.

The Laplace estimatdt is defined by

S=90€00,1P: ) 6y =1,.
’ A pn-1(s, y) +1
ey Y S Os(y) = —————
yey (37 y) € X yv (y) VN—l(S) +a
For anyé = (6,).cs € X° let Ps o denote the conditional and results in an estimator which we call traplace estimator
probability density on¥’ x ) defined by for the treeS defined by the formula
e N N
Ve, ) €XxY,  Psslyle)S 0,0 Vo € (XX )T (s(en), yw) + 1
T T —1{s(TN), )+
QN (v Jaws 271 = A= e )y)A+ - @
Thetree modelS is by definition the set of conditional den- PN-1\S8WEN)) T
sities{Ps, ¢: 6 € £}, The following theorem gives an upper bound for the risk of
As aresult, atree modélis a model with dimensiod(S) =  this estimator:

S| x (a—1). T
[S1x (a=1) Theorem 1: For any exchangeable distributidt; on (A" x

V)N and for any treeS € Cp, the risk of the Laplace estimator
[ll. ESTIMATOR FOR AGIVEN TREE MODEL for the trees satisfies

Let us first consider the case when a tree maglet Cp is a—

given and one wants to use the observatigfis * is order to es- Rpy(QF) < 1€nf Rpy(Pse) + —5— (S)
timate a parameté( Z," ') € ©¥ such thatkp, (Ps. bz )

is “small We propose two estimators for this problem the first < qu Rp,(Psg)+ %1 |S].

one is the well-knowrLaplace estimatofor which we gener- gexs

alize known universal bounds (Theorem 1), while the second K 2: The first i litv of Th h hat th
one is a new estimator for which we prove a better bound whenRémark 2: The first inequality of Theorem 1 shows that the
the support of the conditional distribution is smaller than thréSk bound depends on the design distribution, 1.e., on the dis-
whole alphabet (Theorem 23.being fixed, we will use the no- tribution of X}V, and, therefore, that the Laplace estimator can

tation s(.) instead ofss(.) for the suffix functional associated adaptto it. : : . .
with S. Whens is reduced to a single node, this result is proven in

[12] when Py is a product distribution and in [15] wheRy

Remark 1: The problem of parameter estimation for an i.i.dis exchangeable. Here we generalize the method of proof of the
source on a finite space is well known in information theoryatter for a general tree modsl(see also [16] for a similar result
It seems that first the method was considered in [12]; thémthe case of decision trees).
the problem of optimal estimation was considered in [13] and
an asymptotically optimal method was suggested. Recently,
new results about exact prediction were found in [14]. The N
results that follow are nonasymptotic (as opposed to [13]) and vy (s(XnN))
remain true if the samples are not i.i.d. but only drawn from i=1
an exchangeable distribution. Even though the estimators we No1
study are not asymptotically minimax (as opposed to [13]) the - 1(s(X;) = s(Xy)) +1
nonasymptotic upper bounds we obtain are of the order of the
minimax risk.

Proof of Theorem 1:First observe that foranye S

I
-
=
[¥2)
PN
P
g

= s(Xn))

=vy_1(s(Xn))+1
A similar computation shows that for afy, y) € S x

un(s(Xn), Yn) = pv-1(s(Xn), Yn)) + 1.

A. Laplace Estimator
For anyn € N let us introduce the random variables

(V(y, s) €Y xS,
n As a result, the Laplace estimator (4) can be rewritten in terms
(s, y) = >0 U(s(X;) = sandY; = y) of un andwy as follows:
y = @ N
5€ 8, Va € (X x V)7,
_ v N N Con-1y b (s(an)s yn)
\ vp(s) = Z; 1(s(X;) = s). Qs (yN TN 2 ) = onGan)) a1
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Observe also that the maximum-likelihood estimator for Using a computation similar to the one in the proof of The-
Hf\‘:l Ps o(Y;| X;) is 6.(y) = pn(s, y)/vn(s) with corre- orem 1, it is straightforward to show that this estimator satisfies
sponding log-likelihood S (als) — 1)

N Br, (@8) < il Rpy(Pen)+ = ()
sup 1OgH PS,&(Y;‘ | Xz) secxls|

oexs G0 which is a smaller upper bound than the one given in Theorem

_ Z Z (s, 1)lo pn(s,y)  1if a(s) < a for somes € S. However, this estimator requires
N g A5 ) oe vy (s) prior knowledge of the supports4.}.cs. In case these sup-
sES yeY .- . T .
v (5)>0 ports are not known, it is still possible to observe the size of the

. ) i _ empirical supports given by
Using the fact thaPy is exchangeable to get the first equality

and the fact that, ;- andwy are invariant under permutations of ~ V(n, s) e Nx &S, an(s) = Z 1(pn(s, y) > 0).

{1, ..., N} to get the second, we can now write yEA
1 Using these observations we define #taptive Laplace es-
Ep, log — (Yo | Xv: 27 ) timator for the treeS by the formulay ¥ € (X' x V)%,
S ' T7 1
1 N QY (yn |z Z{V_l)
==~ Ery D 1ogQF (Yi| Xi; Zi, ki #4, 1 <k < N) i1 (o(an), yx )+ SX=LEEN)
i=1 vn-1(s(@zn), yn)tan—1(s(zn))’
1 I’LJ\T(S? y) = |f l/]\ffl(s(x]\f)) > 0
=t En Y Y (s )log D
: ; - _ 1 ,
N sES yey vn(s)+a—1 =, otherwise
a

The effect of this modification to the Laplace estimator is to
“boost” the estimated probabilities of letters which have already
been observed. It is easy to check that

N
. 1
=Ep, olelgs N log [ [ Ps.e(Y:|X0)

=1

+ % zc;s Epyvn(s)log <1 + %) V(2 an) €(X x VNI x A,
v (5)>0 > QS (ylan; 2 1) =1
< inf Ep,log - + 4 ! Epylvn(S)|- N "
pexns Psp(Yn|Xn) N which ensures thap?' is an admissible conditional probability
Theorem 1 follows by adding lc:f;:ty. The risk of this estimator can be upper-bounded as fol-
Ep,log Pxn(Yn | Xn; 2071 Theorem 2: For any probability distributio® on X x ) and

) _ ) ) Py = POV for any incomplete tree modél € Cp
to both sides of the inequality and observing tha{S) C S

implies|vn (S)] < [S]. O i Z;S’}/N(S)
Rp, (Qg) < einzfs Rpy(Pse) + SET
B. Adaptive Laplace Estimator €

with

Vse€S, vn(s) = a(s) <1—@)+a(s)—l+(p,1\r(s)

In this section, we suppose that; is a product measu@®
with P € ML(X x V), i.e.,Z;, ..., Zy are supposed to be
i.i.d. with common distributionP.

Suppose that for every € S the support of the conditional
distribution P(Y" | s(X') = s) is known to be a subsed, C A
of sizea(s) = |A,|, i.e,,

wherelimy .. {p,n(s) = 0foranys € & (a precise expres-
sion of {p n(s) is given in the proof in (8)).

_ Remark 3: Up to the vanishing termgp n(s), the upper
Yz, y) € X xY {P(y |) >0, ify € Asa) bound provided in Theorem 2 is smaller than the upper bound
’ ’ Ply|z) =0, otherwise. provided by Theorem 1 for the Laplace estimator by a factor

In that case, one could replace the Laplace estimator for tHe Z <a —1—a(s)+1— als) <1 _ a(s)))
treeS by the following estimator which takes into account theV = a
information about the supports:

_ 1 (a—a(s))’
=~ Z e

N-1
TN 21 ) sES

pn—1(s(@n), yn) +1 which is always positive. Therefore, the asymptotic rate of con-
=< wvny-i(s(zn)) + als) vergence to zero is smaller for the adaptive Laplace estimator
0, otherwise. than for the Laplace estimatordfs) < a for somes.

) if YN € As(mn)



1888

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

However, by (5), the correspondlng rate of convergence faith

the risk of the Laplace estlmat@s in the case{A;};es is
known is>"
bound of Theorem 2 by a factor

v SN s <1__)> <%Za(s).

s€S

This factor can be considered as the “cost” of not knowing

{AS}SES-
Proof of Theorem 2:First observe that if
pn(s(Xn), Yn) =1
then, for alli < N, s(X;) # s(Xn), orY; # Yn. As aresult
an(s(Xn)) = an—1(s(Xn)) +
On the other hand, quN(s(AN) Yy) > 1then

an(s(Xn)) = an—1(s(Xn)).
Therefore, we can compute
Epylog = : N—1
Y (Yn| Xy 20

N
1 :
:—NEPNE log Q9 (Y | Xis Zy, k #£14,1 <k < N)

i=1

1
__N‘EPN Z

sCS
vy (s)>1

No1(s)
pa(s, y) — 14+ ==
(5. )]
x (E pn (s, y)log vn(s) — 14+ ay_1(s) )

yCy
1
>, logg

sES
vn(s)=1

>

sCS
vy (s)>1

1
_NEPN

1
_N‘EPN

p (s, y) = 14 20
vn(s)+ an(s )—1

x| Y pn(s v)log
yey
pn(s,y)>2

N(S)—l

+ 7 a
% I/N Y+ an(s)—2
pn(s,y)=L1

1 1
-5 Ere Dl

sES
vn(s)=1

1
< inf EPV

log——M
= gews N8 Pso(Yn | Xn)

1
+ ;(AS+BS+CS+DS+ES)

sesla(s) —1)/N, which is smaller than the upper

Ay = EPN Z /JN(SMJ) 103 NN(S y) V(S)
= (s 9) = 14+
b (s,)>2
vn(s)+an(s)—1
B,=F (s, y)log
Py y% pn (s, y)log ()
b (s,y)>2
a
C,=F wn(s) > 1 log———
PN (]\() ) yzeg/ gCLJ\T(S)_l
un(sy)=1
D, =Ep, [1un(s)>1) >
yey
pun(sy)=1

vn(s) +an(s) —2
l/N(S)

log

\E, =Ep, (1{ry(s) =1)loga).

For anys € S andy € ), let

P(s) =Pr{s(X) = s}
and

05(y) = PriY =y |s(X) = x}.
Then,vy(s) anduy (s, y) are binomial variable®(N, P(s))
andB(N, P(s)8.(y)). Lete > 0 be defined by

min
SES
P(s)>0

[

min P(5)0 ().

Then, for anys € S such thatP(s) > 0, the expectation of
the empirical support size satisfies

a(s)

a(s) — Z k.Priax(s) =k}

.EPVCLN =a

<a(s)Pr{an(s) < a(s)}

<a(s) | 3 Priun(s,y)=0}
YEA;
<a(s) Y (1-o
yEA;

<a(s)?eNe. (6)
On the other hand, if.x (s, y) > 2 then

1 3
<
pn(s,y) =17 pn(s, y) +1
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and, therefore, for any € S such thatP(s) > 0 we have

Ep, Y :

& (s y) -1
PN (s,y)2>2
1
& (s y)+1
Hun(s,y)>2
1
<3 Z EPN
2 P TE BN, Ps)u(w)
<3 > 1
rey (N +1)P(s)b5(s)
3a(s
<
— Ne

where we used the fact (see, e.g., [17, p. 587]) that for a binomial

B(n, p)

E1/(1+ B(n, p)) < 1/((n+ 1)p).

We can now upper-bound the five terms for ang S such

that P(s) > 0. For A, we write

5 Lo

As S EPJ /JN(Sv y) <

T & pn (s, y) — 1+ 24
pn(s,4)>2

(=)

<Ep, Z 1- a]\;(s) +

ey p(s, y) — 1+ 26
pn(s,4)>2
al s al s
<afs) (1 - Q) + %2 (4(s) - Epyan(s)
+E Z !
Py N 4
& mw(sy) -1
un(s,4)>2
a(s)\ | a(s)® . 3a(s)
< 1 82 LB 2n5
< afs) < a ) + a ¢ + Ne

1889

Finally, one can observe thatify (s, ¥) = 1 andvy(s) > 2
thenax (s) > 2. This provides an upper bound for the integrand
in C, and, therefore,

C.+E.<Ep, [1wn(s)>1) >
yCy
b (s,y)=1
x loga + 1(rn(s) = 1)loga
< log(a)
X Z Pr{pn(s,y) = 1} + Pr{vn(s) = 1}
yEA,
< Nlog(a)

X

(1=P()V T+ (1—P(8)9s(y))N1]

yeA,
< Nlog(a)(a(s) + 1)e”N=De,

We can now sum up the upper bounds obtained for
As, Bs, Cs, Dy, andE; to get

Rpy (QQ) < aicnzfs Rpy(Psy) +% >

sES
P(s)>0
X [a(s) —1+a(s) <1 - ?) +<p, N(s)}
with
3
3
(r,n(s) = ) ey ?V(‘:)
+Nlog(a)(a(s) + e N1 (8)
This finishes the proof of Theorem 2. O

IV. PROBABILITY ON THE MODEL SPACE

The goal in the rest of this paper is to build estimators which
satisfy risk bounds like (1). For this purpose, we propose to
use aggregation methods introduced by Catoni (the progressive
mixture estimator in [15] and the Gibbs estimator in [18]), both

where (6) and (7) are used to get the last inequality. The ter@fswhich require a prior probability distribution to be given on

B, and D, can be taken together

B,+ D, <Ep, <I(J/N(s) >1) > un(s, )

yEA,

vn(s)+a(s) —1

x log o (s)

<Ep, <1(VN(3) > v (s)log <1 Lo 1))

<a(s)—1.

the model set. The idea of setting a probability on a model space
is well known in source coding and prediction: besides under-
lying any Bayesian approach it was suggested in [6] and [19] to
obtain nonasymptotic risk bounds and later this idea was used
in many papers (see, for example, [7] and [20]).

If = is a probability distribution on a model spadd then
log 1/7(m) is calledmodel risk The choice ofr is arbitrary,
but has an influence on the performance of the aggregated esti-
mator. Optimizing this choice is impossible without further as-
sumptions on the true probability distributidhand the approx-
imation properties of the family of models considered.

In addition to performance the possibility of a fast implemen-
tation should be regarded as a guideline for the choice of a prior
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distributionn. For instance, the prior model probability distri- Itis well known that for. () to stay bounded wheh tends
bution considered in the context tree weighting algorithm [ infinity it is necessary that the equatigh(y) = v have a
leads to a remarkably efficient implementation, which shoukblutiony. By (11), this implies thaf.(y) — y must be equal to
be regarded as a fundamental advantage of the algorithm. zero for somey.

Generalizing the idea of the context tree weighting method, If we now study the functiow..(y) = f.(y) — v its derivative
let us define a probability distributiomp onCp, the tree class is
of memoryD, as follows:

VSeCh,  wp(S)=dS Goly) = az(1+y)* ™~ 1
wherecp € R satisfies thereforeg,, is minimum fory™* such thay/,(y*) = 0, i.e.,
ISI _ 1
Z “p ©) ¥t = (ax)™= — 1.
SelCp
The model risk is then linear with respect to the size of the AS a result, the minimum value gf; is
model, because a—1 L
1 1 9:(y") =1- (az)T-<
VS eCp, log—— =|S|log —. (10)
mp(S) €D The necessary condition th#t(y) — y = 0 for somey is
The priormp will be used in the following sections to build equivalent tog.(y*) < 0, i.e.,
convex combinations of different models. We will obtain partic- .
ular upper bounds for the risks with this arbitrary choice (Theo- c< (a—1)
rems 4 and 6), but the reader should be aware that any different - a®
choice of prior is possible and would lead to different uppavhich implies
bounds. We propose to chose a prior which results in a model 1
risk proportional to|S| because the “parameter risk,” i.e., the log — <alog(a) — (a — 1)log(a — 1)
risk of an estimator for the modél like the Laplace estimator, ¢
is also linear inS| (Theorem 1). < log(a) + (a—1)log “
The following lemma provides a useful upper bound on the “=
model risk independent ab. < log(a) + 1.
Lemma 1: The family of probabilitieS 7 p } pen satisfies Lemma 1 now follows from this inequality, the fact thak
cp, and (10). O

VDeN,VS€Ch,  log—— < |S|(log(a) + 1).
7p(S)

Proof of Lemma 1:By (9), it is clear that(CD)DeN is a V. AGGREGATION USING A PROGRESSIVEMIXTURE

decreasing function ab, becaus€,, C Cp; foranyD € N. ESTIMATOR
Therefore, this nonnegative series has a limit imp_. ¢p, In Section I, we presented two estimators for the parame-
suchthav D e N, ¢ < ¢p. ters of every given moded: the Laplace estimataps and the
Forany(D, ) € N x R let adaptive Laplace estimat@}s. In this section, we show how to
_ Z £S5 aggregate the Laplace (resp., adaptive Laplace) estimators for

variouss, i.e., build a convex combination of tH& s }scc,,
(resp.,{Qs}sce,), by using the so-callegrogressive mixture
estimatoyintroduced by Catoniin [15]. Instead of selecting one
modelS and the corresponding estimatQg, (resp. QS) asin
classical model selection procedures, this estimator is a mixture

SelCp
The functionup () is increasing withe and D, and by def-
inition up(cp) = 1 forany D € N. Thereforeup(c) < 1 for
anyD € N, and

lim up(c) <1. (11) of all the Laplace (resp., adaptive Laplace) estimators.
D—oo Let us first describe the construction of the progressive
By decomposing any tre§ € Cp as the root node and mixture estimatoQ¥ (Y | Xn; Z{" 1) which aggregates the
(eventually empty) subtreés;, ..., S,) € (Cp_,U{0})*one Laplace estimators defined in Section Ill.
gets the following inductive relation: An integerK € [1, N—1]isfirstchosen and the observations
Z LIS Zﬁ . are split into arestimation seZ{* and avalidation set
Scep LK1 L .
For each mode$ € Cp, the estimation set is mapped by the
= Z LIS+ Sl Laplace estimator to a conditional distributi6y ™' (Y | X)
(S1,-:84)€(Cn_1U{0}) defined by
=z(up-_1(x) + 1) VS € Cp, Ky | x)=Qk+\(v|X; zI) (12

If we introduce the functiotf,,(v) = z(1 + )® then this can

be rewritten where the latter is defined by (4).

For anyn € [0, N — K — 1] let now Q™ (Y | X) be the
up(x) = falup_1(x)). conditional distribution obtained as a Bayesian mixture of the



VERT: ADAPTIVE CONTEXT TREES AND TEXT CLUSTERING 1891

primary estimator§ Q% **(Y | X) }sec,, with the prior distri- with
H H K+n ; 2
butionT onCp and the observations, /', i.e., Sn(s) = (\/’YK-i—l(S) + log(a) + 1)

QY| X)

K tn log(a) +1 — — 2
2 W(S)<Iﬁ §+1(Y;|Xi)) Ky | X) LV A (Va 1= V/yreqa( ))
== = Ctn : Yr+1(s) Va—1+ /log 1)’
> w(S) <Iﬁ Q§+1(n|Xi)> +m( a—1++/log(a) + ) )
Se€Cp 1=K+1

_ . _ o Remark 4: The definition of K" shows that the larger the al-
The progressive mixture estimaiQr is then a Cesaro Meanphabet, the longer it takes to train the Laplace estimators com-
of thes.e Bayesian estimators trained on subsamples of grovwHigred with the time it takes to aggregate them with the progres-
Sizes, 1.8, sive mixture estimator (i.eK /N increases with, with limit 1
asa tends to infinity). For a large, the risk bound associated
Xy). with any modelS is very close tdS|(a — 1)/N, which is the
risk of the Laplace estimator for this model.

N—-K-1

Xy 2071 o Z QM (Y
n=0

N ‘e
Q@ (Y T N-K

The idea of building a progressive estimator has been pro—Remark 5: The terméy (s) is the sum of three terms. The

posed independently by Barron [21] [22] and Catoni [15] whiy/St is the term one would expect i1, (s) were knowna

: priori so that the size of the training s&t could be better ad-
proved the following property. justed. The second is the loss due to the facthat; (s) is not

Theorem 3 (Catoni, [15]): knowna priori and we decided to take fdk the value corre-
. . sponding to the best split f&p? instead of)Y . The third term
N ; K+1 . vanishes to zero and is the loss due to the fact Khéias to be
Bor (@) < Slélch {RPN (Q@s™)+ N-K W(S)} an integer.
(13)

Proof of Theorem 4:Using Theorem 1, Theorem 3, and

_ Lemma 1 we can write
The construction of the progressive mixture estimaggy <

7 . < 10>(a) —+ 1
N K41 g

which aggregates the adaptive Laplace estimators is exactly {Rev (Qw ) = Slcnch {RPN ( s ) + S| N K }
same as the construction 6f except that eacty should be

replaced byQ. ~ < inf {RPN(PS 9)

We can now evaluate the risks @fY andQ? . Secp,6exss ’

Theorem 4:Let QY (resp.,QY) denote the progressive HS] < a—1 +10g(a) + 1)}
mixture estimator based on the family of Laplace esti- K+1 N-K
mators {Q5™'}sec,, (resp., adaptive Laplace estimators The function
{QE* 1 scc,,) and on the priorr defined in Section IV, with v fa) = 1T 1 log(a)+1

Tz +1 N—z
is minimum on(0, V) at the point
. Nva—1-/log(a)+1
Va—1+/log(a) +1
K must be an integer so a good candidate to ensure a risk as
small as possible fap? is K = [x*] for which we can compute

the size of the training being set to

T

[N\/a— 1 — /log(a) + 1
K=
Va—1+ \/log(a) +1

where[.] denotes greatest integer.
For any exchangeable distributidt; on (X x J)™, the risk

of QY satisfies FE) < 2= ! + tog(a) +1
- ozt N —x*
Rp, (QY)< _inf _ < Rp,(Psp)+ 1816y (a—1) (\/a — 1+ /log(a) + 1)
NATTS = secp,0exs A N+1 <
-~ Nya-1-/log(a)+1
with
) . (log(a) +1) (\/a — 1+ /log(a) + 1)
_ ; — - +
Cn = (\/1 +log(a) +Va 1) <1 Tty C 2) : (N +1)y/log(a) + 1
2
Let yx 41 be defined in as in Theorem 2. The risk @fY (\/a — 1+ \/log(a) + 1)
satisfies = N+1

ONn
R (QN)< inf Rp (P )_,_M X 1—1—; .
VAT ) = scepecsis )NV Se N+1 N — /%
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The upper bound concerning the Laplace estimator in The-As for the progressive mixture estimator presented in Sec-
orem 4 follows by observing that > 2 and, therefore, tion V, the observationé?{“"1 are split into two set and
Zy 1 where K is an integer in[1, N — 1], and the obser-

. K : : :
log(a) + 1 vation setZ;* is used to define the set of primary estimators
— 7 SVitleg(Z) sz {QETH (Y| X)}sec,, using the Laplace estimators as in (12).

The Gibbs estimator at inverse temperattire R, using the

For the second part of the theorem concerning the aggregatii¢r = onCp is now the following conditional distribution:
of adaptive Laplace estimators we follow the same computation

except that by Theorem 2 we get GY, (Y| Xn; Z1 ’—1)
> w)( T a5 oEr o )
N . (S QEtYy, Xn> Ya | Xn
RPN (Qﬂ') S SEC;I}EEES {RPN(PS,H) + EE;S, gS(K)} déf SeCh n=K+1 S S
’ N-1 8
S YL X, )
whereg;, is defined by S&ZC:DW( )<n:1}+f?s (Yo | Xn)
(14)

) = yE+1(s) | log(a) +1

r+1 N—z ~ This definition shows that the Gibbs estimator can be consid-
ered as a “thermalized” version of both the Bayegidn= 1)
and the maximume-likelihoods = +oc) estimators. Catoni
studied in [18] this estimator in the high-temperature region
# < 1 which is equivalent to a deliberate underestimation of

gs(x

We now just need an upper bound fgy(K) where K is
chosen as in Theorem 4, which is given by

g5(K) < Tr41(s) | logla) +1 the sample size: to compute the Gibbs estimator, the empirical
x* N —a* distribution of ¥V — K — 1 observations is plugged into the Bayes
- estimator for a sample of siz€ N — K —1). The reason to con-
Y+ (s) (\/a -l \/108(a) + 1) sider high temperatures is t‘f{at the estir?]ator gains stability with
- Nva—1- \/log(a) +1 respect to the empirical process whedecreases (at the limit,
it is constant whers = 0). This property is used by Catoni to
(log(a) + 1) (\/a — 1+ /log(a) + 1) prove a general upper bound for its risk in the spirit of (1), which
+ (N +1)/log(a) + 1 takes the following form in the particular case when the primary

estimators are log-bounded.

Theorem 5 (Catoni, [18]):Let x > 0 such that

<\/a—1+\/10g(a)+1
N N+1
o |l () Ve 1+ ylos(a)+1 VS €Cp,¥ (2, 2) € (X x V),
Va—1 \'  Nva—1- logla)+1 —x <logQs ™ (v| e, 2%) <0.

+/iog@ +1

If g satisfies

1 2 1 10gX> IOgX
. , 3 —— [4f1-(x-1D[2-—==)—==-1
SN+1{(\/’Yls+1(8)+\/10g(a)+1) £ = T <\/ (x )< » N
% (Va=1- w[(ﬂ(s))Q then the Gibbs estimata#" , defined by (14) satisfies
YK +1(8) r ’ . '
XN — ) N 1 K41 R
(@a-1)(N=2) Rpy(Grg) < jnf {RPN (@s )+[3(N_K) log W(S)} :

(15)

X (\/a—1+\/10g(a)+1)2}. O

The definition of the Gibbs estimator

G5 (Yn

Xn; 27
VI. AGGREGATIONUSING A GIBBS ESTIMATOR N>

In this section, we present a second aggregation method batsoeg regate adaptive Laplace estimators follows exactly the
on the Gibbs estimator, introduced by Catoni in [18]. Let us 9greg P b , y

: oS ESTe , : me construction by replacing evepyby Q.
first describe this esUmat«i?f:‘? s(Yn | YN, ZN¥~1)to aggregate same construction by replacing e y Q~
Laplace estimators. We can now evaluate the risk 65 ; andGY ;.
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Theorem 6: Let Remark 6: Asymptotically, the upper bound on the risks of
the Gibbs estimators provided by Theorem 6 appear to be worse
{ Xy = log(N +a) than the risks of the corresponding progressive mixture estima-
xn = log(N + a) + log(a). tors given by Theorem 4 because of the fadtgyx)~*. This
is due to the fact that the inverse temperature has to be taken
Let smaller and smaller a& increases in order to prove that (15)
1 holds. However, the conditions imposed @Gnwhich involve
a uniform bound on the likelihood of the primary estimators
might be very conservative in the particular problem we con-

logx~\ log xn sider. Therefore, larger values@®fmight also ensure the validity
X I-(xv—1(2- =222 ) =2~ 1

By =
B po—

YN YN of (15), and the actual performance of this estimator is probably
better than the one proven in Theorem 6 (it is reasonable to think

V2Ioglog N from the computations in [18] that = 1/2 will work in many

N—+o0 IOg N ’ Cases).

. . _ Remark 7: Even though the risk of the Gibbs estimator is
and letfy be deduced frony v asfy is deduced fromyn.  \yorse than the risk of the progressive mixture estimator one
Let G ; (resp.GYY ;) denote the Gibbs estimator at inversgnight prefer to implement the former because it only involves
temperaturedy (resp.,/ ) based on the family of Laplacethe computation of one mixture, while the latter involves the

H K+1 H H . . . .
estimators{Qg "' }scc,, (resp., adaptive Laplace estimatorgomputation ofV — K Bayesian mixtures which are then aver-

{Q&* }sec,) and on the priorr defined in Section IV, with aged.

the size of the training being set to ) )
Proof of Theorem 6:The family of Laplace estimators

] {Q5 1 scc,, is uniformly bounded by

K Nva—1— /By (log(a) +1)
VBTl e (X x V)KL VS e Cp,

| vas T+ /85 og(a) + 1)

R 02> log Q5™ (yrt1|zrq1; 21)
where[.] denotes greatest integer (resp.,Hodefined like K

b (ss(rr4), wk) +1

with 3y replaced bysy). = log
For any exchangeable distributidty on (X x V)V the risk vi(ss(ex+1)) +a
of GY , satisfies >—log(K +1+a)
> —log(N + a).
; . S|Cn = S
Rpy (GY,) < inf {RPN(P579)+ |N|_f\1}
S&Cn,fex? - Similarly, the family of adaptive Laplace estimator

with {QE* 1} scc,, is uniformly bounded by

2 1 VR e (X x V)KL VS € Cp,
Cn = < (1 +1log(a)) Bt +Va — 1) <1 + —) .

N -2 0> log @fgﬂ'l (yK+1 | T K415 Z:{()
Let vk 41 be defined in as in Theorem 2. The risk@f) , 2~ log(N + a) — log(a).
satisfies

We can, therefore, apply Theorem 5 with- (resp.,x ~) and
> on(s) } B (resp.,By) as defined in Theorem 6 to get
s€S

T SeCp,pexS N+1

RPN (éfr\;@) < inf {RPN(PS79) +

. - 1 1

N < i f K41 1 R
R”N(G’“f‘*)—slencD{R””( s B )
with and

. ! 1 1
‘ N _ < i ‘ K+1 _ -
Rpy (Gw,,a) S guf {RP v (@) An(N—K) log W(S)}

Sn(s) = < Yre41(s) + 4/ (log(a) + 1)3;’1>

Using these two inequalities instead of (13) the proof of The-
log(a) + 1) B3t 2 orem 6 now follows exactly the proof of Theorem 4. O
. \/M (VT Vi)

a—1
VII. DATA-DEPENDENTPRIOR ON THE TREES

Tr+1(S
% Theorem 1 provides two bounds for the risk of the Laplace

) estimator on a given tree: the first depends on the design distri-
~ bution, i.e., the distribution ak'?, and reflects the property of
. 1 ) ’ 1
X < Va—1+4/(log(a) +1) By ) : adaptiveness of the estimator, while the second does not depend

+
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on the design law, and is therefore weaker. The aggregation of caba
these estimators described in Sections V and VI are also distri-
bution-independent because the model risk is chagatiori. o aacc
In this section, we present a modification which can be ap- T= cc
plied to any of the four estimators studied in Sections V and VI.
It consists in replacing the prior distributianon the set of trees cbec
Cp by adata-dependentrior 7 to aggregate the primary esti-
mators in order to get a better upper bound on the risk, which (a)
depends on the design distribution. This modification should be
especially useful when the design distributiBg (X{") is con- E
centrated on a small subspace4#f, which is, for instance, the b _
case in natural language modeling (see Section IX). S= V(S)=
For clarity, we just show the construction of the estim&3dr cc
which is the modification of)Y, the progressive mixture esti- E
mator which aggregates Laplace primary estimators and is de-
fined in Section V. Let us, therefore, formally define the density
QX (yn ‘Tlrv vy foranyzY € (X x V)N ,
Let 7(x)) denote the tree (in the sense of Section 1I-B) S
whose vertices are the suffixes of thgs, i.e.,

vE)- .
T() = {@)%: (. ) € [1, N1 x [0, DI} b5
and letZ (z{) be the graph obtained by removing frafijz{)

cC
cbec

the vert|ces with only one child and merging the two edges ©
starting from a removed node (i.e., the edge toward its parent g 2. (ac)jT(l 1)tf)0f Engmpglf)E? (b) EAtfeé' | ngl;a(re)s gﬂ its VISItgd n;(%§8 an

corresponding subtree See example C) Same as FIg with a
the edge_ tpyvard its single child). sAJbtreec_)f the graphT( M different trees (see Example 3)
is by definition any connex subgraph which contains the Poot
as a vertex.

caba

(b)

and letv(S) be the smallest subtre®of 7 () such that for
Example 2: Fig. 2(a) shows the gragh(z¥) whenD = 4 anys € vy (S), there is ars’ € S such thats is a suffix of s/,
and the observation is} = (caba,aacc,cbcc). In that case, the
set of vertices of/’ (xi’) is {\,caba,cc,aacc,cbgcTwo pos-
sible subtrees of (%) are shown on the right-hand sides o
Fig. 2(b) and (c), with respective sets of verticgscaba,cg S andS’ indicate the nodes which belong#g(S) andvs(S7).
and{A,cc,cbeg. The right-hand sides of the same figures show the corresponding
Let C(z]) be the set of subtrees @f(z)Y). For anyS € v(S) andv(S’)
C(zY) the suffix functionalsg is defined in the same way as \We can now give an upper bound on the risk of the estimator
whens is a classical tree (see Section 1I-B). For &g ¥ let Q—

Example 3: As in Example 2, suppose that = 4, N = 3,
ndz? = (caba,aacc,cbcc). The left-hand sides of Fig. 2(b) and
Ec) show two tree§ andS’ in Cp. The squares around nodes on

P53 denote the conditional probability distribution Theorem 7: Let the size of the training set be the same as in
Ve, y) €XxY,  Psyle) =0, v). Theorem 4. For any exchangeable distributinon (& x V)N,
’ s the estimator)Y using the data-dependent priosatisfies
The counters I
RPN (QF)
(1/,,( )) S and (Nﬂ(s y))(s ¥)ESXY ] Cy
are defined as before by (3). Therefore, the distributiors secp, gftztﬂ {RPN (Ps0) + Bry (‘U(S)D N+ 1} (16)
Qe(yn | #n; 21 ~1) can also be defined as before by (4). with
N 2
Letw(wl ) be the distribution o€ ({") defined by Ox = (\/1 T Tos(a) + va = 1) <1 n Nl 2)
VSel(z)), Tum(S) = IS
wherec is the real number which satisfies Remark 8: For anyS € Cp, [v(S)| is always smaller than
3 |S|. The upper bound in Theorem 7 is therefore smaller than
B Z =1 the corresponding upper bound in Theorem 4. The difference
Sce(={’) can be large in cases whéty (X/V) is concentrated on a small

Using this data-dependent priay, ~y instead of the data- subset ofd?, because in that cage( X{") is a small subtree of
independent priorr in the definition onA (see Section IV) Ui, A’ with high probability.
we finally obtain a modified estimatap2 .

For any treeS in Cp recall thatvy (S) denotes the set of
visited nodes of, i.e.,

Remark 9: The Laplace estimator for a given tree requires
no modification because its risk is already bounded in terms of
the number of visited nodes (see Theorem 1). Therefore, only
un(S) ={s € S: un(s) > 0} the priorm needs to be modified to become data-dependent.



VERT: ADAPTIVE CONTEXT TREES AND TEXT CLUSTERING 1895

Remark 10:Every treeS € Cp splits the datar)" into From (17), we deduce that for affy, S, andé the following

[v(S)| = |v(v(S8))] clusters. The number of different separaholds:

tion of the datarl¥ by trees inCp, is, therefore, 1
Eryny1100)-0108 oy T 2

NN = Hv (v(S)) :S ¢ CD}‘ i 1 Ox
S Bpyazy i 7oon=n 108 g xy T IO T

which is equal tdC(x1")| up to the number of trees with unvis- : . " L

ited nodes. If we had chosen fara uniform prior onC(z), . Taking the expectation of this inequality with respectto
yields the upper bound in Theorem 16. O

the model risk would have been of the ordedog N (X{).
The idea of computing an upper bound involving such a model
risk instead of a model risk of ordéog |Cp| (resulting from

a uniform prior) is classical in statistical learning theory (see

VIII. | MPLEMENTATION FOR THE AGGREGATION USING A
GIBBS ESTIMATOR

[23]), where the numbets/(zY) and Elog(N (X)) are, re-  In this section, we show how the estimator
frg(ra);nvely, known as thehatter coefficierdnd theannealed en- GQ , (YN Xn: 7] f_l)

using the Gibbs estimator to aggregate Laplace estimators (see
. . Section VI) can be computed using a recursive algorithm in the
under permutation of the index¢s N]. As a result, for an i S .

P ¢ ] y spirit of the context tree weighting algorithm [7]. The construc-

such treeT, the distributionPy(Z)N | 7(XN) = T) is ex- : .
changeable. In the event the[(XN) = 77, the prior is fuo?h;/;/epglraeesrent can be adapted to the other estimators studied

independent of the data and therefore Theorem 4 can be 'gp
plied. As a result, the following holds forady € C(X{¥)and A Exact Computation

Proof of Theorem 7:The random tre@ (X?) is invariant

6 e xS ,
© Let 7, = |J;2, A’ be thecontext treeof depth D, and for
E _ — los 1 everyz¥ € (X x Y)" let the following counters be attached to
Py (dz) | T(x}))=T) 8 QY (Yu | Xn; 2N the nodes of the context tree, i.€.(s, y) € Tp x V-
<E, v imn e log ——— 415 9N [ (s, 0) = 3 1(sis a suffix ofar; andy; = ),
= T PNAZY | T(X{)=T) Pg7§(Y]\f XN) N+1 i=1
(17) NZL .
pvis,y) = . 1(sisasuffix ofz; andy; = y),
=K
whereCly is defined in Theorem 7. 1 &.+1 fix of dun —
For anyS € CP andf € ©°, letd € ¥*(°) be the parameter pals,y) = 1Usisasuffix ofzy andyy = y),
defined by vr(s) = > pr(s, v).
L yey
Vs e u(S), 0, =0, The subscriptd” and V' refer to the training set and the vali-

dation set, respectively. Using these counters we can define the
wheres’ is the longest visited suffix ofin S. Forany: € [1, N] following functions attached to each nosle 75, and defined

this definition leads to for any subsetV" ¢ Y and¢ € {0, 1}:
7 _ Py 1 ¢(5:y)
Py (i |20 =0 e (92) O des pr(s, y) i;\/NT(L& y)+
W pf (8) = Cp H VT(S) _ E I/T(is) Ta
=05 (v:) ey i

where s; is the longest visited suffix of = (z;) in S. But where
s@(a:i) is by definition a suffix ofz; thus s, must also be )
a suffix of z;. The largest suffix ofz; in S is ss(x;), which is P(s,y) =B | pv(s y) - Z pv (s, y) | +&pals, ).

by definition a suffix ofs@(a:i). This shows that, = ss(z;), ey
and, therefore, For anyS € Cp ands € S let

Ns(s)={i€ A:ise S}.

Let now~(€) be defined recursively off, for £ = {0, 1} by
The parametef only depends o throughZ and, there- the formula

Vi€ [1v N]’ PS,O(yi | '777) = PU(S)ﬁ(yi | '777)

fore, we can integrate this equality to get ~E(s) = wéf)(s)’ if I(s) =D
g e 1 YO = T w® [ v©%s), otherwise. O
PN(dZ{V|T(X{V):T) g PS,H(Y]\T X]V) NCY 1€EV\N
1 The following lemma shows that¢)(s) can be seen as a

=Ep azy | 7(xy)=7) 108
Pu @z I TN =T) 8 B =y

Xn~) tensorization of a sum over all subtrees with reot
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Lemma 2: and that this mixture should usually be unimodal in the space
of conditional distributions, by construction of the Gibbs es-
V(s &) € Ip x {0,1}, timator. As a result, an approximation 68 s is the Laplace

estimator corresponding to the tree with h|ghest posterior prob-
OEEDY <H W () (55 ) ability, i.e
SeCp_q \s'cS T
and the following result gives an effective way of computing the fosé) (Yn|Xn; 2071 = Qg(;%v_l) (Yn | Xn; Z1)
estimatorGY , (Vi | Xn; ZN71). _ '
" with
Proposition 1: E—
YOO S(z' ) = arg max p(S)
N N N N—-1y __
Vzy € (X x W)Y, Gr 3 (yN TN 2] ) = SO0y Nl )
. K —I—l
Proof of Lemma 2:We prove the result by backward in- = arg pax {W 1[I @s* (wilai %) }
duction oni(s). The property is obvious fdis) = D by defi- =K+l
nition of v(&)(s) in that case. Suppose it is true for astyc 7 log ¢
such thatl(s’) = d + 1, and let a strings € 7p of length = arg max {|S| 3
I(s) = d. Then we get c

(f) (f) N-L i i
Z w H vy LS +10g H Q§+l (yz|$“ Z{s)}.

NCY ICY\N Mt
=K
© (19)
p—— /Ib
B Nzc:wa iel;{/\/ $ec§:d ) <£[S wna(e(3 LS)) This formulation shows that?(”') is obtained by aenal-
o ized maximum- I|keI|hoos|eIect|on procedure where the penal-
, ization for the log-likelihood of a modef is x = (logcp)/f
Z H Wi () (8') - per node.
SeCp_q \s'€S

The implementation of this model selection procedure can

Proof of Proposition 1:It is easy to check the following follow the spirit of the implementation of the following mixture.

equality for anyS € Cp, 2 € (X x V)V, and¢ € {0, 1}, * For any subsetV € Y ands € 7p let
using the definition of-(S) and of the Laplace estimat@rs ™*:
def .
- 3 (vte = 3 vt
K +1 g k+1 K\¢& =
H Q y7 |$7a ) (yN TN, 2| ) yeY icN
i=K+1 NT( ) Z NT(st y) +1
&) log PEN
- H w <(s : * 08 vr(s)— > vr(is)+a
sES ieN

. N _
As aresult, the estimatd¥, ; can be expressed as follows: « Let be recursively defined offj, by

Vo e (X x )Y, 7(s) = wp(s), if I(s) = D
= (L) 0 -
; _ » \s s F(s) = ma + is otherwise.
GN g (yn | 2071 = Z552 28 : 7 = " zcng( )
(0)
> (ILuln) | |
SeCp \se8  For everys € 7p if the nodes in the selected subgét

Proposition 1 is a direct consequence of this equality and used to computg(s) are marked, theis is the largest
Lemma 2. O tree made of marked nodes.

o ) Remark 11:Another possibility to approximate the esti-

B. Approximation by Model Selection mator GY , would be to use a Monte Carlo Markov chain

The implementation suggested by Proposition 1 using tBemuIatlonto approximate the mixture (see [16] for a discussion
functionalsy(¢) involves the computation of a sum overC A  in the framework of decision trees).
at every node (see (18)). In real-world applications, the compu-
tation of this sun2® terms might be computationally too expen- IX. EXPERIMENTS AND NATURAL LANGUAGE PROCESSING
sive if the size of the alphabet is too large. APPLICATIONS

As an alternative, one can observe that the estin@(for, is

) . As an application for the estimators studied in this paper, we
a mixture of Laplace estimators PP pap

show here how they can be used to model texts written in nat-
G7T 5= Z p(S) g+1 ural language, and give results from a text clustering experiment
SeCo based on these statistical models.
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Empirical per-sample log-likelihood

0.2

Nodes penalization
K/N

Fig. 3. Log-likelihood withN' = 20 000 for variousK andlog(cp)/ 3.

For a given alphabet, a textT written in natural language the shape of the prior and the speed of learning from examples,
(e.g., in English or Japanese) is a string which can be parsedpectively.
into a series of letters. One can think df as the letters of A second parameter can be optimiz&d-N, which is related
the alphabefa, b, ..., 2z}, the ASCIl symbols set, a dictio- to the relative sizes of the estimation and the validation sets.
nary of words, or whatever set of symbols in terms of which In order to observe the effect of these two parameters, Figs. 3
the text can be represented as a sequétice . ., t;r) with and 4 show results of an experiment carried out from the text

Viell,|T]], t: € A Far from the Madding Crowdy T. Hardy, which is the file

For a givenD < [T, let (X, Y) € AP x A be the random “book1” of the Calgary corpusused in [24]). The text (in Eng-
variable obtained by randomly choosing an index[1, |T’| — lish) was parsed into a sequence of characters using the alphabet
D] uniformly and setting A =Ha, b, ...,z O}, whereO represents anything that is

X =t tip not a letter. The estimator was then trained on i.i.d. samples of
{ size N = 20000 with varying K/N andlog(cp)/f, and its

Y =tiip. likelihood was computed on a test set made of 5000 new i.i.d.
For a givenV, let us consider the statistical experiment that cosamples. Fig. 3 shows the per-sample log-likelihood for varying
sist in samplingV i.i.d. variables(X;, Y;);c[1, v @ccording to log(cp)/P andK /N, and Fig. 4 shows for clarity purpose the
this common law. This experiment can be used to train any ga&me curve fol{/N = 0.7 being fixed.
gression model to infer” from X, which gives a representation For anyK/N, the valuelog(cp)/3 = 0 corresponds to the
of the initial text as a stochastic model. Note that the initial text assical maximum-likelihood estimator. Negative values corre-
deterministic, and that the random nature of the variables consg®nd to negative penalties and, therefore, favor large models.

from the sampling. Positive values are more natural and correspond to penalizing
more large models than small ones.
A. Tuning the Parameters Forlog(cp)/B < —3, the likelihoods of the models on the

As an example, let us consider the model selection algorittfst Set are very low: this is the classical phenomenon of overfit-
described in Section VIII-B. Equation (19) shows that the “costng, that is favored by the negative penalization. In this region,
of adding a node to a model Isg(cp)//3, which is a param- indeed the selected model appears to be too large for its param-
eter we can try to optimize for a given problem. Note that if wgters to be accurately estimated. lég(cp)//3 increases t®,
were trying to compute the actual estimator which is a mixtuf8€ performance increases and peaks at a value a bit larger than
of models, for instance using M(?nte Carlo Slml..llatl-ons, two dif- 15yailaple  at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.cor-
ferent parameters could be varieg; and /3, which influence pus/.
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Empirical per-sample log-likelihood ( N=20,000 , K/N=0.7 )
-1.85 T T T T

-1.95

-2

-2.05

Log-likelihood
o

—2.35 ! i ! !
- 0 5 10 15 20
Node penalization ( = log(C) / beta)

Fig. 4. Log-likelihood withN = 20 000 for K'/N = 0.7 and varioudog(cp)/ 8.

zero, which corresponds to the optimal penalty for the particulastimate thev ” distributions ofY” from a finite training corpus.

unknown probability and the particular sizes considered. Largén adaptive approach, as the one described in this paper, is

penalty values decrease the performance of the selected mdwddier at balancing the complexity of the model and the preci-

on the test set because its dimension becomes too small. In 8iah of the estimation which basically depends on the size of the

case, indeed, the gain in the variance term due to decreasingtthaing corpus.

number of parameters to estimate does not balance the increages an example, Fig. 5 shows the log-likelihood of different

of the bias term which corresponds to the distance bet@®ermodels trained on i.i.d. samples of growing size (between 100

and the selected model. and 10000) and tested on an i.i.d. sample of size 5000. The
Fig. 3 also shows that for a given penalty there exists an apodels tested are as follows.

timal choice of division between the training set and the valida-

tion set, which corresponds to the balance between training thee N-gram models fotV = 1, 2, 3, 4, with classical non-

Laplace estimators and choosing the best model: it is better to adaptative Laplace estimators.

have a training set a bit larger than the validation set. Naturally, . The aggregation using a Gibbs estimator, with classical

as the penalty increases, the optimaincreases too, because nonadaptative Laplace estimators.

increasing the penalty means giving less importance to each val-

idation sample. » The aggregation using a Gibbs estimator, with adaptive

Laplace estimators.
B. Comparison with Other Models Following the results of the first experiment, the parameters
Many other statistical models can be used to characterize fbe aggregated estimator were setltg(cp)/8 = 0.5 and
relation betweerX andY'. In particular, the so-calledy-gram K/N = 0.65.
models are widely known and used in natural language pro-This experiment shows that the estimator obtained by aggre-
cessing to characterize sequences of characters (e.g., for chation of Laplace estimators is almost as efficient as the best
acter recognition purposes) or words (e.g., for speech recoghi-gram models for any training set size. It also shows the im-
tion purposes). In adV-gram model, the distribution df is provement gained with the introduction of the adaptive Laplace
supposed to depend on the suffix of length- 1 of X, with V' estimator and the adaptive probability on the model space. In-
being fixed. deed, it is clear that the support of the distributionsfofire
Thus,N-grams are particular regression trees, i.e., complatéien smaller than the whole alphabet (e.g., the character fol-
trees of depthV — 1. The difficulties arise when one wants taowing the letter “q” should almost always be a “u” or a space),



VERT: ADAPTIVE CONTEXT TREES AND TEXT CLUSTERING 1899

Performance of various models for increasing N
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Fig. 5. Comparison with other models.

and that the string&X” observed only form a small subset of thevhereexp, means the experiment that consists in sampiing

set of sequences @b characters. i.i.d. pairs(z, y) from textT;. This pseudodistance is symmetric
and satisfiesl(T, T') = 0 for any textZ".
_ ) Let now a set op texts{T1, ..., T,,} be given. The unsuper-
C. Unsupervised Text Clustering vised text clustering problem is the problem of grouping these

. C . . . texts into a number of categories according to their similarities.
While the distribution of a letter following a string might haV‘%VIost existing clustering algorithms require a distance-like func-

straightfqrwar(_j applications as Suc_h. (e, for disambigqati%nal to be defined between any two elements to be clustered,
purpose in optical character recognition systems), the estlmam{‘t can be the pseudodistance defined by (20)

we study can be considered more generally as a wagpf To illustrate this we took a series of eight books from each

resentinga text pecause itis able to “learn” various StatiStiC%f which we extracted five texts, and computed the distance be-
features very qU|cI.<Iy. , tween any two of the resulting 40 texts (see Table I).

As an example, it can be used to define and measure & notiog ¢ text was 12 000 characters long and was used to generate
of distancebetween texts. Indeed, I&, andT: be two given pree files by i.i.d. sampling. The first two files (8000 and 4000
texts that one wants to compare. Using them to generate staligmpjes) were used as estimation and validation set, while the
tical experiments, it is natural to say they are close to each othgt 4 fije (5000 samples) was used as a test set to measure the

if the model that has been trained to explain the first statistic@ alihoods used in (20). The parameteg(cp)/3 was set to
experiment is good at explaining the second, el far from -

each other otherwise. Fig. 6 is a typical profile of distances between one text (here
This can be quantified as follows. Suppose each text is usg@ text number 23, extracted from SpinozBitical Treaty)
to generate a statistical experiment on which an estimatorgigd all other texts. It shows that the distance with the four texts
trained. This generates two modéls(Y" | X) and@Q2(Y | X)  extracted from the same book (i.e., texts 21, 22, 24, and 25) are
which can be used afterwards to compute the likelihood of agjearly smaller than the distances with the rest of the database,
sample(z;, y;);L, . In particular, one can define a pseudodisand that it could “recognize” the similarity within the texts ex-
tance between the two texts with the following formula: tracted from the same book.
In Fig. 7, we plotted a “0” as soon as the distance between
two texts was smaller thah03. Clusters corresponding to the
books already appear with this naive thresholding method.

Q1(exp;)
Q1(exp,)

Q2(exp,)
Q2(exp,)

d(T1, Tr) = log + log (20)
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TABLE |
TEXT DATABASE
Text Number Extracted from
1-5 Wintson Churchill (The Crossing)
6-10 Joseph Conrad (The Arrow of gold)
11-15 Arthur Conan Doyle (The hound of the Baskervilles)
16-20 Karl Marx (Manifesto of the communist party)
21-25 Baruch Spinoza (Political treatise)
26-30 Jonathan Swift (Gulliver’s travel)
31-35 Francois Marie Arouet Voltaire (Candide)
36-40 Virginia Woolf (Night and day)

Distance with text n.23 (Spinoza)

1.8

1.6

Distance
o = =
[} - N H

o
)

0.4

0.2

! ) |
0 5 10 15 20 25 30 35 40
Text number

0 ; ; i T
Fig. 6. Distance between text number 23 (Spinoza) and the other texts.

One should remark that no dictionary or preprocessing of thbaracteristic of these estimators is their ability to find a good
text was used. The usual way of representing a text as a “eg@deoff between the bias of different models and the risk of their
of words” in the literature about natural language processiggtimation for a given number of observations.
is limited as far as statistical estimation is concerned becausesych estimators are interesting in cases when the “real” law
the number of possible words is much larger than the size pf{ s complicated, but progressively approximated by models
the text itself. On the other hand, we experimented on modelsincreasing dimensions. As an example we considered the
based on characters only which lead to less risky estimatiq@§ e of modeling texts written in natural language, for which

and encouraging results. classical Markovian models lik&-grams are limited in depth
because of the size of the training corpus that is needed. In spite
X. CONCLUSION . . .
of the simplicity of our models, encouraging experimental re-

We presented a family of statistical estimators of a conditionsilllts lead us to believe that important improvement could be
distribution and proved upper bounds on their risk. The ma@btained by carefully designing pertinent models for a partic-
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Similarity between texts (i.e. distance < 1.03)
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Fig. 7. Similarity between texts.

ular application while keeping in mind the necessity of efficient[10]
statistical estimations.

(11]

12
ACKNOWLEDGMENT [12]

The author wishes to thank O. Catoni for his numerous sug[—13]

gestions and advice.

(1
(2]

(3]

[14]

REFERENCES
(15]
G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic
indexing,”Commun. ACMvol. 18, no. 11, pp. 613-620, Nov. 1975.
R. Cole, J. Mariani, H. Uszkoreit, G. B. Varile, A. Zaenen, and A. Zam-
polli, Eds., Survey of the State of the Art in Human Language Tech-

[16]

nology. Cambridge, U.K.: Cambridge Univ. Press, 1998. [17]
L. D. Davisson, “Universal noiseless codingEEE Trans. Inform.
Theory vol. IT-19, pp. 783-795, Nov. 1973. [18]

[4] J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,”

(5]

(6]
(71

(8]

IEEE Trans. Inform. Theoryol. IT-27, pp. 12-23, Jan. 1981. [19]
L. D. Davisson, “Minimax noiseless universal coding for Markov
sources,”IEEE Trans. Inform. Theoryol. IT-29, pp. 211-215, Mar.  [20]
1983.

B. Y. Ryabko, “Twice-universal coding,Probl. Inform. Transm.vol.

20, no. 3, pp. 24-28, July 1984. [21]

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: Basic propertiedEEE Trans. Inform. Theoryol.

41, pp. 653-664, May 1995.

M. Feder and N. Merhav, “Hierarchical universal codintEEE Trans.
Inform. Theoryvol. 42, pp. 1354-1364, Sept. 1996.

(22]

[9] A.R.Barron, J. Rissanen, and B. Yu, “The minimum description length[23]

principle in coding and modeling|EEE Trans. Inform. Theoryol. 44,
pp. 2743-2760, Oct. 1998.

[24]

T. M. Cover and J. A. Thomaglements of Information Theary New
York: Wiley, 1991.

N. Merhav and M. Feder, “Universal predictiodEEE Trans. Inform.
Theory vol. 44, pp. 2124-2147, Oct. 1998.

B. Y. Ryabko, “A fast adaptive coding algorithmProbl. Inform.
Transm, vol. 26, no. 4, pp. 305-317, 1990.

R. E. Krichevskyi, “Laplace’s law of succession and universal en-
coding,”|EEE Trans. Inform. Theorwol. 44, pp. 296-303, Jan. 1998.
F. Topsoe, “Instances of exact prediction and a new type of inequalities
obtained by anchoring,” ifProc. 1999 IEEE Information Theory and
Communication WorkshogKruger National Park, South Africa, 1999,
p. 99.

0. Catoni, “Universal’ aggregation rules with exact bias boundstyi.
Statist, to be published.

G. Blanchard, “The ‘progressive mixture’ estimator for regression
trees,”Ann. Inst. Henri Poincaré, Probabilités et Statistiquesl. 35,

no. 6, pp. 793-820, 1999.

L. Devroye, L. Gyorfi, and G. LugosA Probabilistic Theory of Pattern
Recognition New York: Springer-Verlag, 1996.

O. Catoni, “Gibbs estimators,” Ecole Normale Supérieure, Dept. Math.
Applications, preprint LMENS-98-21, May 1998.

B. Y. Ryabko, “Prediction of random sequences and universal coding,”
Probl. Inform. Transm.vol. 24, no. 2, pp. 87-96, 1988.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context weighting
for general finite-context sourcesEEE Trans. Inform. Theoryol. 42,

pp. 1514-1520, Sept. 1996.

A. R. Barron, “Are Bayes rules consistent in information?,"Gpen
Problems in Communication and Computatidh M. Cover and B.
Gopinath, Eds. New York: Springer-Verlag, 1987.

A. R. Barron and Y. Yang, “Information-theoretic determination of min-
imax rates of convergenceihn. Statist.vol. 27, no. 5, pp. 1564-1599,
1999.

V. N. Vapnik, Statistical Learning Theoty New York: Wiley, 1998.

T. C. Bell, J. G. Cleary, and I. H. WittenText Compres-
sion Englewood Cliffs, NJ: Prentice-Hall, 1990.



