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DOUBLE MIXTURE AND UNIVERSAL INFERENCE

By JEAN-PHILIPPE VERT

FEcole normale supérieure de Paris

Given a family of finite dimensional statistical models and a finite
number of observations of a random variable, we show how to build a
“double mixture” estimator for the density of the random variable whose
risk in terms of Kullback-Leibler divergence has a sharp bound compared
to the risk of the best model in the family. This estimator is a mixture
of model estimators which are themselves mixtures in the continuous
parameter spaces of the corresponding models.

The idea of using double mixtures has been studied for a long time
in the field of universal compression in coding theory but we highlight
the fundamental differences between our statistical estimator and “twice-
universal” coding algorithm, due to the difference in the criteria to opti-
mize.

1. Introduction The problem of estimating the probability distribution P
of a random variable X on a space X from a finite number of i.i.d. observa-
tions X4,...,X, is a central but difficult problem in statistics. As pointed out
by Vapnik ([22]) it is generally ill-posed when no assumption is made on P. In the
real world, however, the statistician usually knows nothing in advance about P.
In that case a natural approach consists in building a family of parametric mod-
els {Py,, € ML (X);0p € O, CRP™ m € M} and considering the minimization
problem

Jnf inf 1(PF,), (1.1)

where [ is a loss function between probability distributions. In other words, rather

than trying to guess P, the statistician looks for the most informative projection
of P on the most reasonable model O,,.

An estimator for this problem of distribution estimation is a measurable mapping

P from X™ to MUL(X). The performance of such an estimator with respect to a

true distribution P is usually measured in terms of its average loss, also called risk:

EP@n(dX{V)l (P,P(X{V)) .

For an estimator with value within a particular model (parametric estimation),
this risk can often be expressed or at least upper bounded by the sum of two terms:

e a bias term which represents the distance between the actual probability P
and its projection P, on the particular model;
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e a fluctuation term which represents the difficulty of estimating P,,.

Usually the larger the model the smaller the bias, but the larger the fluctuation
risk. A natural way of solving the estimation problem is to decompose it into two
stages : first build good estimators B, for every model m € M and then select one
model m with the lowest total risk. With this approach the final estimator Py, is the
estimator associated with the model supposed to realize the best trade-off between
bias and fluctuation. This philosophy is the starting point of many techniques in
the field of model selection, to which a huge amount of literature has been devoted.
As we won’t further develop this approach let us just mention typical references
including works by Akaike ([1]), Mallows ([16]), Schwarz ([21]), Rissanen ([19]),
Barron and al. ([4]) and Vapnik ([22]).

Model selection is not the only way to deal with problem (1.1). An other approach
is gaining attention in statistical estimation: the idea of model mizture. This idea led
to remarkable theoretical and experimental results in coding theory for compression
purpose where mixture codes ([13]) are known to be universal with respect to a class
of encoders, under quite general assumptions.

As far as statistical estimation is concerned, every Bayesian estimator can be con-
sidered as a mixture estimator. While these estimators are optimal for the Bayesian
risk theoretical results concerning their performance in the worst case setting are
difficult to obtain. Barron ([3]) and Barron and Yang ([5]) considered a Cesaro
mean of Bayesian estimators to derive minimax density estimators for non para-
metric density classes. More recently Catoni considered an equivalent estimator
together with a half-sample trick to deal with parametric density classes ([8], [10]),
and showed that a thermalized version of the Bayesian estimator ([9]) could ap-
proach the minimax risk under very general assumption.

In a recent paper ([23]) we applied Catoni’s estimators in the framework of
regression. We showed how to build a mixture estimator P,, = YicT w(i) Py, where
the weights w as well as the estimators P, are built from the observation, and obtain
a universal risk bound. This approach involved a split of the observations into an
estimation set used to build the estimators P, for every m € M and a validation
set used to compute the weights w(i) of each estimator.

In this paper we go one step further in this mixing approach. After observing that
the estimators P, for every model can be mixtures on the continuous parameter set
themselves (think of the Laplace estimator for a Bernoulli distribution for instance),
we show how it is possible to carry out a double mizture in one stage by considering
the larger parameter set {(m,6,,),m € M,68,, € ©,,}. This means in particular
that the observations are not split into two sets any more, and that the same
observations are used to estimate continuous parameters and model structure in
the same time. The idea of a double mixture finds its roots in coding theory where
double mixture codes have given very interesting results ([14], [20]). An important
source of inspiration was the work of Willems, Shtarkov and Tjalkens concerning
the context tree weighting algorithm ([24] , [25]), together with Catoni’s Gibbs
estimator ([9]) which can be used to mix discrete as well as continuous parameters.

This paper is organized as follows. After setting up the general regression frame-
work which will be used afterward in section 2 we state the main result of this
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paper in section 3 (theorem 1) whose proof is postponed to section 6 because of its
length. Section 4 is a comparison between the estimator we propose for statistical
estimation and “universal” estimators used in coding theory, and section 5 presents
a particular application of our estimator for string analysis, with an efficient imple-
mentation. We refer to a previous works ([23]) for suggestions on how to use such
models for natural language processing applications.

2. Notations and framework In this section we present the regression
framework together with general notations which will be used within the paper.

Let (X,B;1) be a measurable space and (Y, B2) be a finite measurable space
endowed with the discrete o-algebra. We note « the size of the set J. The goal of
statistical modeling is to predict the value of a variable Y € ) from an observation
X € X. The set Y being finite this covers in particular the problem of categorization.
However we focus on estimating the conditional law of Y knowing X, and not on
the design of a classifier. In particular the criterion we will use is a measure of the
difference between laws and not the number of categorization errors. Note that the
variable X can be almost anything.

To model the random nature of X and Y we suppose that a family of unknown
exchangeable probability distributions is given :

YNeN  PyeM ((Xx))V, (B @By)Y),

and we let {(X;,Y;) = Z;;i=1,..., N} be the canonical process.

One can for instance think of Py as a product measure P®Y with P being
a probability on (X x Y,B; ® Bs), if the observations are supposed to be i.i.d.
However we will only use the weaker assumption that Py is ezchangeable, i.e. that
for any permutation o of {1,... ,N} and any 4 € (B; ® By)",

Py (ZN € A) = Py ((aZ){V € A) ,

where 07 is the exchanged process

(UZ)Z-= a(i)» ’i=1,...,N.

The property of being exchangeable is more general than the property of being a
product measure, and it covers more situations which can happen in the real world,
e.g. random splitting of the observations into different sets, or sampling from a finite
set without replacement.

Within this framework the observation is Z' ~* and the goal is to estimate the
unknown conditional distribution Py (dYn|Xn; zN _1).

2.1. Finite context model Without any further restriction on Py the problem of
density estimation based on empirical data can be ill-posed. Therefore we suppose a
family of models is given. It will be used to approximate the unknown distribution.

DEFINITION 1. A model m = (Sp,, Sm) consists of:
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o q finite set Sy = {51, .. ,5D,, }- Dm s called the dimension of the model.

o A measurable mapping sy, : (X,B1) = S, which describes how the space X
is partitioned according to the model.

For any model m € M and x € X, sy, () is called the context of x with respect
to the model m.

The goal of any model is to partition the space X into D,, categories through the
mapping s,,, and to build a conditional distribution for Y which only depends on
the category of X. Such a class of models includes in particular regression based on
histograms, CART models ([7]) or representation of complex objects (e.g. images)
using filtering of features extraction.

Finally we suppose given a countable family of such models M = {m;};.; with
7 being a countable index set, as well as a prior probability distribution 7 on Z.
The role of the prior distribution 7 which influences the performance of the final
estimator will become clearer in the sequel.

The variable Y being discrete its distribution is a Bernoulli distribution charac-
terized by a parameter of the a-dimensional simplex ¥ = {6 € [0,1]*/ Y, 6" = 1}.
Therefore any model m is associated with a parameter space ©,, = XP~ to define
a family of conditional probability distributions with the following density:

VYm € M0, = (bs,,...,65,, ) € On,V(z,y) €X XY Pm.o,. (Y]|z) = Ggm(z).

2.2. Problem As we want to compare estimators based on different models we
can not use a distance defined on the parameter space. In order to measure directly
the distance between the true sample conditional distribution and the estimated one
we use the conditional Kullback Leibler divergence (also called conditional relative
entropy, see e.g. [12, p. 22]) which is an intrinsic and fundamental measure of risk
defined for two probabilities P, and P> with densities p; and py by :

pi(ylz)
pz(y|$)'

The model selection problem for the average Kullback risk is to solve approxi-
mately, knowing the sample Z{V ~1. the minimization problem:

K (P (dY|X), P2(dY X)) = EPl(dX,dY) log

. N—
et o Epy(azd 1)K (Py (dYN|XN; Z]7Y) , P, (dYN|XN)),  (22)

where K(.,.) is the conditional Kullback Leibler divergence.
3. The double mixture estimator The continuous parameter set associated

with a model m € M is ©,, = P~ Let us define a probability distribution on
this set as a product measure p,, = p®P= where p is the Dirichlet distribution
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with parameter 1/2 on ¥, i.e. the measure with the following density with respect
to Lebesgue’s measure A(df):

1 T ( ) e 1
w(db) = Ta ( )a 11
(= i=1
2

This prior, also known as Jeffrey’s prior, arises naturally in coding theory for

compression purpose because it asymptotically maximizes Shannon’s mutual infor-

mation between an i.i.d. sample drawn according to a Bernoulli law of parameter

6 and the parameter ([15], [11]). The reason why we use it here will appear in the

computation of the performance of our double mixture estimator. Let us recall a
formula that will be used frequently in the sequel:

§

[¢]

r(@) 1r(x+3)
) r(Ss)

Based on these priors for the continuous parameters and on an arbitrary prior
7 on the model set M, we can construct a double mixture estimator which takes
the form of a Gibbs mixture, as defined by Catoni in [9]. In order to clarify the
definition of this estimator it is convenient to introduce notations for the entropy of
a Bernoulli model and the Kullback-Leibler divergence between two such models,
respectively as:

VA e (RY)” / (01)*1 (0 p(de) = (3.3)
P

VeeS  h#)=-) 6Ylogh?,
yey

V(61,62) €% d(6a]l62) =D 67 log -
yey

For any model m € M let us also introduce the following random variables which
are expressed in terms of Z (the dependency w.r.t. m is not indicated in order
to simplify the notations, and because no ambiguity about which m these variables
refer to should arise in the sequel):

Y(y,8) €Y xSm @Y = 1(sm(X;) = s and Y; = y),

V(y,s)eyxsm b?;:l( (XN):sand YNzy)7
V(y,s) €Y x Sm,¥(B,6) eR®  7¥
Vs € Sm,V(B3,€) € R? ng



6 J.-P. VERT

VseSn 0,036 = (Z;( :

The reason for using these notations basically comes from the following equality
used to express the thermalized likelihood of a sequence Z{¥

with respect to a
particular model (m,6,,):

N-1 s
(H Pr b (Yi|Xi)) Prngn (YN |Xn)®

i=1
- H H (6Y) 0y (8.€)

SES, YEY
= 1] eXp[nsﬂ§ )Y 6Y(8,€)log Y
SES, ey

=TI exp [-ns(8,6) (1 (6:(8,€)) + d (6:(8,)1165))] -

SESH
(3.4)
Following these preliminaries we can now state the main theorem of this paper

which contains the definition of the double mixture estimator as well as a universal
bound for its risk:

THEOREM 1. Let

- a
X_24+810g(N+ 5 +1),
and 3 > 0 such that

1 log x\ logx
ﬁ<ﬁ<\/”( 1’(2‘7>7‘1>

2loglog(N)
N-oo  8log(N)

For any exchangeable distribution Py on (X X y)N , for any choice of prior
probability distribution T on M, the posterior Gibbs distribution p defined on the set

{(m,8n),m e M,0,, € 0,}

p(dfm|m) ~ ] exp [-ns(8,0)d (8:(8,0)[16.)] 1 (dbs),

SES,
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and

p(m) ~x(m) ] { W“f) (n (ﬂ,ﬁ))“?

ses. \T (5 2me

[ exp {=nu(6.0) [0 (6.(5,0) + 4 6.(5.0)18.)]} n 8 |
X

can be used to form the double mixture estimator

GY (aYNIXN; ZY7Y) = Epmoa,) Prsom (dYN|XN)

which satisfies

Ep, (azv-1)K (Pr (dYn|XN; 27 71) G (dYi| Xv; 27 71))
< meMi,%ieem{EPN(dZ{V_l)K (Pn (dYN|XN; ZY "), Ponsp,,, (dYN| X))

v (Pn 5 1om g +Ov o)

with

On(m) =Br, 3 <4nsa2 ; )

+ —
sl (8,8)  4n,min;(0*(3,5)) + 2
This theorem is proved in section 6.

REMARK 1.
The double mixture estimator can be expressed in the following way:

Glgv (dYn|Xn; 2071 = E (m,dom) Pm,6.. (AYN|XN)

= > p(m)E o, /m)Pm.o.. (dYNIXN).
meM

Therefore it is a mizture under p(m) of the estimator E g, |m)Pm.,, (dYN|XN)
which is, for any given model m, a thermalized version (at inverse temperature 3) of
a Bayesian estimator for the continuous parameters with respect to Jeffrey’s prior
on every simplex. This Bayesian estimator for 0,, has been studied in particular

by Krichevsky and Trofimov ([15]). One interesting feature is that it can easily be
computed using the following formula:
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2 (3.5)

E, (49, |m)Pm,b0.. (UN|ZN) =

REMARK 2. For a given model m the additional term Cn(m) decreases to zero
and becomes negligible compared to the other terms as soon as the projections
P(dY|sm(X) = s) are in the interior of the simplex for all s € Sy,. Every node
s € Sy for which this projection is on the vertex of the simplex adds a risk of order
S which is not negligible anymore compared to Dy, (o — 1)/2 + log 1/m(m). This is
due to the fact that Jeffrey’s prior is asymptotically minimaz in the interior of the

simplezx, but only mazimin on the whole simplex (see [26]).

REMARK 3. The wupper bound on the inverse temperature [ is of order
(loglog N)z /log N. However this bound might be conservative, and it is rea-
sonable to think from the computations in [9] and the ezperiments in [23] that
B = 1/2 will work in many cases.

4. Twice-universal coding and statistical estimation Let us have a look
at the differences between the double mixture estimator we introduce for statistical
regression purpose and “twice-universal” estimators used for compression in coding
theory. In the compression framework the variables Y} = Y;...Y; play the role
of the variables X; and the goal is to design a family of conditional probabilities
{ﬁi(dYHXi)} - such that their per-sample redundancies be small compared to

the per-sample redundancy of the best model when the number of observation goes
to infinity, i.e. that

1 1 1
~Epnlog ——F—— < f —Epn log + en(m,0,)

- < in
N 1Y, Pi(Yv|X;) ~ meMbmeom N [T P, (Y| X3)

with

Vm € M,V0,, € O, lim eyx(m,6,) =0.
N—oo

More precisely such a family of estimators is called a “twice-universal” code ([20])
if it is strongly universal (in the sense of [13]) with respect to every model m € M,
i.e. if supy en(m,fm) goes to zero as N goes to infinity with the minimax rate of
convergence for the model m. In other words a twice-universal code is minimax up
to a vanishing term in the convergence rate with respect to every model m.

A good solution to this apparently difficult problem is to take for P a so-called
“two-stage” mixture or double mixture ([14]), that is a discrete mixture of estima-
tors for every model which are themselves mixtures of the probability distributions
in the model class w.r.t. to a least favorable prior on the continuous parameter
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set. An impressive implementation of this idea has been carried out for a binary
alphabet (a = 2) in the so-called context tree weighting algorithm ([24]), where
Jeffrey’s prior p(df) is used on every simplex together with an arbitrary prior 7 on
the model set to build the estimator:

/o co 1 Pmo.. (wilz;)p(dbnm)

; mGM m j=1
Py (Yilzi) = 1—1 ) (4.6)
wm) [ L posn (sle )t
mGM Om €Om j=1
which satisfies :
1 1 1 1
—Epnvlog———— < inf —Epn~ log
N MY, Py (YilX,) ~ meMibncon N Héil P p,, (Vi X;)
1 logns
+ N log + Z < )] .

This expression shows that this family of estimators has a per-sample redundancy
which decreases at the minimax rate D,, log N/(2N).

In the case of statistical regression the criterion we are interested in is slightly
different from the redundancy used for compression purpose. Indeed we are only
interested in the estimation of the conditional law of Yy knowing Xy and the
observations Z}¥, while the redundancy is only an average of this criterion for
i =1,...,N. The relationship between the redundancy and the statistical risk is
more precisely expressed in the following equality :

1 1 1
—Epnlog——— = — Epilog ——————.
NPYVRE Quix) N ; P QX
In other words the estimates of the conditional law of Y knowing X obtained
from a universal coding procedure have good performances in terms of cumulative
risk for an increasing number of observations.
In order to compare the twice universal coding algorithm (4.6) and our double
mixture statistical estimator defined in theorem 1 we need to rewrite (4.6) as

/068 Hpmo (yjlz;)pn(dbrm)

m 1
P (ynlen) = D pe(m = :
M
me H Prm, b, (Y5125) (A0 )

with
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7rm/ Hpmo (yjlz;) (dbm)
0.,€0

VmeM  po(m) = » =

(4.7)

3 wm) / Hpmlel (5175 1(d6)

m'eM 07.€00, j—1

If one forgets one second about the inverse temperature 3 (think of g = 1), it
is possible to compare this posterior with the one expressed in theorem 1 to point
out one important difference:

o

ns(1,1) T
Ym e M p(m) ~ p.(m sg ( Sre > .@ . (4.8)

This shows that in order to get a small statistical risk instead of a small cumu-
lative risk one needs to modify the prior 7 on the model set in order to take into
account the differences in the difficulty of estimating the continuous parameters.
Besides a constant “penalization” term which does not depend on IV, one sees in
expression (4.8) that as N increases, models with a larger nurnber of parameters

should be given more and more weight because the term ], . s, s T behaves like
N°z' Dm

An other way to look at the particularity of our double mixture estimator is to
observe that the posterior weight p(m) of a model m is essentially proportional to
the maximum likelihood of the observed sequence in the model class. Indeed one
can notice that if  is in the interior of the simplex,

/Eexp(—nd(§||t9)) ~ ﬁx(ﬂ)_%l,

n—oo T2 27

and therefore, for any model m in M,

plm) ~_ Zw(m)exp (<Dla=1)/2)x T[ [ exp (=n.(8.000.(8.0) n(as)

N—oo Z
SESm
N-1
~ l71'(m) exp (—Dp(a—1)/2) x su H (Vi] X;)P.
N Z P m Hme(gm u Pm,b,.

(4.9)

Compared with (4.7) one sees that instead of doing a double mixture one should:

e replace the mixture estimator for continuous parameters by the maximum
likelihood in every model;

e penalize the likelihood by a factor exp (—Dp, (e — 1)/2) .
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As far as performance is concerned the main difference between our double mix-
ture estimator and a twice universal code is that the bound of the statistical esti-
mator is not on the cumulated risk.

REMARK 4. An fundamental link exists between minimazx estimators and miz-
ture estimators : in can be proved under quite general assumptions that a mizture
estimator with respect to a “least favorable” prior can be a minimax estimator (see a
survey and references in [17]). Our formula for p gives an idea of what such a least
favorable distribution could look like in the problem considered. Two points are of
interest:

o The factor exp(—Dy,(a — 1)/2) in the expression of p (m) can be regarded as
a penalty term for the dimension of the continuous parameter in each model.

o The prior on the simplex is Jeffrey’s prior. This suggests a penalty term for
the continuous parameters inversely proportional to the variance of the corre-
sponding Bernoulli models.

This can also be related to penalized mazimum likelihood estimators ([{]) in which
a penalization of models proportional to their dimension arises for other reasons.

5. Double mixture on context trees

5.1. The estimator In this section we present a particular form of the double
mixture estimator defined in theorem 1 when the variable X is a string and the
models considered are context trees. In other words we consider the case X = YP.
We will basically use the same models as described in [23] where an application in
natural language processing is proposed.

Let D be a fixed integer. We define a model m by a non-empty set S,,, C U?:O i
of finite strings of length not larger than D such that any suffiz of any string of m
be also in m (by definition a suffix of a string z; ...z; is of the form z;...z; for
some j < 7). This definition implies in particular that the empty string A belongs
to every model.

The projection s,, associated with a model m is simply the transformation from
any string x € X' into its longest suffix that is in &,,.

Finally we can define a natural probability on M as follows:

YmeM  w(m)=CPm, (5.10)

where the constant C is adjusted so that )\, 7(m) = 1.
It is shown in [23] that in that case,

1
log ol <1+loga.
Therefore the “model risk” is controlled as follows:

Ym e M log

wm) < (1+loga) Dy,.

As a result we can apply theorem 1 to this particular setting to obtain:
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THEOREM 2. Let Glﬂv be the double mixture estimator as defined in theorem 1.
For any exchangeable distribution Pn on (X X y)N it satisfies :

E by (azy—)K (P (YN[ X3 Z0771) , GF (dYn|Xw; 207))
< endnf Eem{EPN(dziv_l)/c (Pn (dYN|Xn; ZY7Y) , Psg,, (dYN|XN))
D, ([«

-1
+,3—N (T—i—l—{—loga—i—CN(m))},

2

1 a a
CN(m) N mEPN Z (4ns(ﬂaﬂ) * 4’”,5 mlnl(a_z(ﬂaﬂ)) +2) ‘

Note that the larger the alphabet size the smaller the model risk term 1 + loga
compared to the parameter risk (o — 1)/2.

5.2. Implementation The exact Gibbs estimator as a double mixture is difficult
to compute efficiently because the number of models is very large as D and «
increase. However it is possible to imagine a suboptimal implementation which
computes an estimator which might be not so different from the double mixture
estimators in many concrete cases.

We propose to replace the double mixture procedure by the selection of the
model with the largest posterior distribution. Our hope is that in many cases the
Gibbs posterior is unimodal and that the selection of a particular model with a
large posterior probability is representative of the mixture in terms of probability
law.

Following (4.9) and (5.10) we see that a good candidate for the quantity to
maximize is:

Rl D 1 a-1
v(m) =log sup p,ng'X'——m(log—+—).
( ) 9, €. E m ( z| z) ﬂ C 9

This equation shows that the model selection we propose takes the form of a
penalized maximum likelihood with a penalization proportional to the size of the
model D,,. In order to get an efficient implementation of this model selection proce-
dure we can use a context tree (see [24], [10], [23]), i.e. a suffix tree representing all
possible strings of length smaller than D hierarchically, the root of the tree being
the empty string A. Let us attach the following counters to every node s of the
context tree (we use the equivalence between a node and the associated string):

N-1
Viey af,.:Zl(sisasufﬁxofa:nandyn:i),

n=1
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K
ns:ZI(sisasufﬁxofxn).

n=1

If we now note § = (log1/C + (o« — 1)/2) /3 and define the recursive function w
on the context tree :

¢ ay ay
Tt I(s) = =) —tlog—= -
) =D w(s)=3 ] tlog k=9,
yeY
) CEDSUANED I
. ieN ieN
ieEN yey ''s 8 g *
\ ieN ieEN

then it is easy to see that max,,car v(m) = w(\) and that the model m which
realizes this maximum is the connected component of A in the set of nodes that are
selected in NV at every node in the definition of w.

For a given node s the problem remains to compute the corresponding subset
N and to mark the selected node. This can be approximated using an iterative
procedure to build N, starting with A" = () and adding nodes one by one until the
function to maximize locally stops increasing.

The complexity of such an optimization procedure is linear in the number of
nodes of the context tree, because at most « tests are performed at every node
to test the children nodes to select. It is also not more than linear in N because
only the visited nodes are concerned, and the size of memory required to store the
context tree is also not more than linear in the number of observations and of course
bounded by the size of the context tree. In [23] we show results of experiments using
an implementation of an algorithm very similar to the one described in this paper
(a “two-stage double mixture algorithm”).

6. Proof of theorem 1

6.1. The Gibbs estimator Let us first recall some facts about the so-called Gibbs
estimator introduced by Catoni in [9]. For a given class of conditional probability
densities {pg } e indexed by a parameter 6 living in a measurable space © endowed
with a prior probability measure 7(df), the Gibbs estimator at inverse temperature
B € RT has a density

95 (ynlen, 20 7Y) = E,, ya0yps (yn|zn)

where pg ¢ is the following Gibbs posterior:
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N-1

11 e (wilz:)” po (ywlan)® (d6)
pp.(df) = ——— -
H Po (yilz:)° po (yn|2n)® m(dB)

i=1

This estimator can be considered as a “thermalized” version of both the Bayesian
(8 = 1) and the maximum likelihood (8 = +00) estimators. Catoni studied in
[9] this estimator in the high temperature region § < 1 which is equivalent to a
deliberate underestimation of the sample size : to compute the Gibbs estimator,
the empirical distribution of N — 1 observations is plugged into the Bayes estimator
for a sample of size S(IN — 1). The reason to consider high temperatures is that the
estimator gains stability with respect to the empirical process when 3 decreases (at
the limit, it is constant when 8 = 0).

In order to control the risk of the Gibbs estimator let us introduce the following
notations:

Ep,M? 2y, logpg (ynlzN)
(d0)

p
=—|0A inf s
X ¢ef01] Epy Var ,~  logpg (yn|zN)
Pge (a9)
and
N
112 (wiles)”
- i=1
vs (0) = EPNEng (0" log 5

Hpo' (yi|$i)ﬂ
i=1

The following result, which we will be used to estimate the performance of our
double mixture estimator, is a particular form of the main theorem of [9]:

THEOREM 3 CATONI, [9]. If the inverse temperature (3 is such that

B<L (\/1+(X—1) (2—loﬂ> logX—l),
1 x /) x

then the risk of the Gibbs estimator at inverse temperature (8 is upper bounded by

Epy (azy1)K (Py (dYn|Xn; 2071) , GF (dYn|Xn; 27 7Y)

20

< inf {EPN(dZ{V‘l)}C (PN (dYN|XN;Z{V—1) , Py (dYN|XN)) + AN

(2]
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In case O is discrete one can show that v3() is upper bounded by logm ({})".

However the interesting point of this estimator is that it can be computed for any
set of parameters ©, not necessarily discrete. In our case, we propose to apply this
estimator for the set of parameters

0= {(m,Gm),mEM,em GQM}a

endowed with a probability density expressed as a product:

m(df) =x(m) x [[ w(dfs), (6.11)
SESM

where 7 is a prior probability on M (we will show that it has to be taken
somehow different from 7). Theorem 1 will be a direct consequence of theorem 3
after estimating an upper bound on the inverse temperature 3 to be used and on
the risk bound 7.

6.2. Choice of the inverse temperature § In this section we prove the following
lemma:

LEMMA 1.

XS)‘(:24+810g<N+%+1).

A direct consequence of this lemma is the possibility to chose the inverse tem-

perature (3 as
1 log ¥\ logx
g 1+(X_1)(2_%>ﬂ_1
x—1 X X

2loglog(N)
N—ooco  8log(N)

in order to fulfill the conditions of theorem 3.

PROOF OF LEMMA 1. For any given z¥ € (X x )" and § € [0,1], let  and
f be defined for £ € [0, 1] by:

N-1
1) =B [] 2o Wilz:)’ po (ywlzn),

i=1

f(§) =logn(¢)
The function f is related to the Gibbs estimator through the following equality:

loggév (yN|$N;Z{V) = f(1) — £(0).
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Moreover a simple computation shows that t}l\}e first three derivatives of f are
equal to the moments of log pg(yn|zn) under p;fg(dG) :

f(§) =E ogpg (Ynlzn)

o]
Pg,g(do)

f'(€) =Var .~ logpe (ynl|zn),
Pg,g(de)
FO© =M°

p:-)l,g (a0)

Using (6.11) and (3.4) we see that for £ € [0, 1],

log pg (yn|zN) -

N-1

€)=Yy 7’T(m)/@ 1 2m.o.. ilz)? pmos.. (unlon)® p(dbim)

meM m =1

=3 wm) I / exp [—na(8,€) (h(@:(8,6)) + d(@:(5, €)]165))] 12 (d6y) .

meM SESm

However for every model m € M the variables ns(3, £) and 85(3, £) only depend
on £ for s = s(zn). Besides, using (3.3), the integral involved in the preceding
formula is known to be (for s = s(zn)):

r (,Ba’s”" + % +§)

F(ns+%+£)

)

/E exp [~1a(8,€) (h(8,(5,)) + d(@:(5,€)]16.))] 1 (dBs) = Cte x

where C'te is a term which does not depend on £. As a result, if we introduce the
functions:

1
r (ﬂag:(szv) + 9 +£)
(6
r (ns + 5 +£)

then 7 can be decomposed in the following way:

)

V(m, &) € M x[0,1] m (&) =

77(6) = Z Amﬂm(g)a (6.12)

meM

where the (Ap),, o do not depend on &.
In order to express the derivatives of p and 7 let us introduce the Polygamma
functions:
] di+1
VieN Yi(z) = sy log['(z2).
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Indeed, if we use the notation:

Y (i,m) € N x M o7 (&) = (ﬂa’s’f:(m) + % +§> — i (’nsm(mN) + % +€) )

then we get:
Hm = Bm®g (6.13)
fm, = pm (67" + (85°)%) (6.14)
W =t ((5)° + 3¢5 0T + 65°) - (6.15)

In order to control g we will need the following controls on ¢;* :
LEMMA 2.  For all (2V,&,m) in ZN x [0, 1] x M the following inequalities hold:
o
> ™€) > — =
02 6'(§) = — (log (N + 5 +1) +3),
and for any integeri, i > 1 :
it1(6)

OZWZ—Q(Z'+2).

PRrROOF OF LEMMA 2:. In order to prove the first inequality concerning ¢f* we
use the fact (see [18]) that the Psi function 1)y is increasing on R}, that 10(1/2) =
—v — 2log2 and that 1(2z) < logz + 1 Therefore the following inequality holds
V(zN,&,m) € ZN x [0,1] x M :

0> 68'() > vo (%) — o (BN +5 +1)

\Y

—7—210g2—10g(ﬂN+%+1)—1

AV

—(log<N+%+1)+3)

In order to prove the second inequality of lemma 2 we can use the expression of
1p; in terms of the Hurwitz Zeta function, for ¢ > 1:

) > 1
(1) = (=1)" 14! —_—.
vilw) = (DD o
This shows that for any v > 1/2 and ¢ > 1:

_Yin(2)
0< T <2+,

Therefore, V(2N,&,m) € ZN x [0,1] x M and i > 1 :
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Nz ) T3 +HE p
. . X Yito(u)du
0> i1 (§)  JBalN L tEHe

= ;n(é') - /"s(mN)+‘2"+€
B

YN 1
Ay (zy)T2TE

Yit1 (u)du

>-26+2) O

We can now concentrate on the problem of upper bounding x. Using the fact
that f = logn, one easily gets, for any given z{':

M? v logpy (yn|zN)

pate(dD) _f® ©
Var v logps (yn|zn)  f"
pplyg(do)
_ a2 (6.16)
n'"n—(n')? n

S 77(3)77 _ 77”77[
o' —)?
the last inequality holding because 1’ /n = f' = E,logps(yn|zn) < 0.
Let us now consider an ordered list of models : M = (m1,...). In order to
simplify the notations, let us write ¢ for ¢;n", for i € N, and let us note:

(5) ?

. 2 o )‘me)‘mj/‘m; (g)ﬂmj &) ifi#g;
VIR = {%/\%mum (©7? ifi = j.
Using (6.16), (6.12) and (6.13) we finally get:
> a8+ 68 — 6)° + 61(36h — ¢4) + #1304 — 64) + b + ]
x < — inf (3.4 EN?
T ey > i (8- )+ 6l + 4]

(&.5)eN?

(¢ + 08) (B — #1)* + ¢4 (36 — B)) + $1(38) — db) + ¢4 + ¢}

< — inf inf

ANEZN (irj)EN? (86— 08)* + 61 + &1
. . (6 + 8 (0h — 80)”  i(3gh — o)) 1385 —ob) o . &}
< o g.fziv (z’,}?efw ( (¢} — #1)? " i " ¢ i ¢ i ¢

<— inf inf <4¢3+4¢{;+@+ﬁ>

T 2NezZN (i,5)eN? oY

§24+810g(N+%+1),

which proves lemma, 1. [1.
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6.3. Upper bound for the risk Let us first state a lemma in order to be able to
control the Psi function. Remember that the Psi function 4y (also called Digamma
function) is defined by

LEMMA 3.

1
Yz >0 Yo (:L‘+§) > log z,
«a a—1
VaeNa>2,Vz>0 ¢0($+—)§logm+—.
2 2z
PrOOF OF LEMMA 3:. To prove the first inequality, we write ¢y as an integral:

00 e—t e—tz
= Y
Ve >0 Yo (z) /0 ( ; 1—e—t>d’

and do the same for log x:

© —t _ —tzx
Ve >0 logz = / € ¢
0

Therefore, for all z > 0,

1 o g—zt—t/2 -tz
1 - - )= _— - dt
ogx — o ($+2) /0 = p

= [ o

0

with, for all t > 0,

e~t/2 1

=" =

9(t) 1—et ¢t
1 1
_2sinh(%) t

Now it suffices to notice that sinh(¢) > ¢, which implies that 2sinh(¢/2) >t > 0,
and therefore ¢(t) < 0 for all ¢ > 0. This proves the first inequality of the lemma.
For the second inequality we can use the following, proved for instance in [2]:

1
Vo >0 ¢0(a‘:)<logm—g.

Therefore we can write, for all x > 0,
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«a a—1
—) - - <
Yo (m+2) log . < ¢u(z),
with

a—1 1
$alz) = log(1+%)— 2  2r+a

Let us introduce y = a/(2z). Then we can write :

Y
a(l +y)

6a(z) = 94(y) = log(1 +9) ~ —y -
whose derivative is
Y
(98) () = W[y(l—a)+2—a].

But « is supposed to be an integer larger or equal to 2, so (¢%)'(y) < 0 for y > 0.
In other words ¢¥ as a function of y is decreasing on Rt, and ¢%(0) = 0. As a
result, ¢¥(y) < 0 for all y > 0. This is sufficient to prove the second inequality of
lemma 3. O

Let us now evaluate the risk defined by

Hpm O yz|xz
0g N

[1 76, Wilz:)?
=1

Vm € Maom €0 ’Yﬂ(maem) = EPNE
o5ty (o)

Using equation (3.4) it is possible to express the posterior Gibbs distribution as:

T exp [-ns(8,€)d (8:(8,)1165)] 11 (65) d8,

SESm

1 [ o [-n(5,)a (8.(5.€)16)] 6. a6,

sES

pg.e (dbm|m) = , (6.17)

and

pﬁE N7T H/exp —Ng ﬂ g) ( s(ﬂ:§)||08)]u(08)d08

seS

X exp l D na(B,h (6:(8,8) | - (6.18)

SES
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In order to simplify the notations let us write ny = n4(3,3) and 8, = 8,(3, 8) in
the rest of this section. As a first step let us prove the following lemma:

LEMMA 4.  For allm in M,
N

a—1
(d9 |m) ngma yz|mt < Zns D) Dm-

pﬁ B i=1 SES,

PROOF OF LEMMA 4:. Using (6.17) we get:

N
log [ [ pm,6.. (wil:) =7

i=1

= Z nsh(é?;)—i- Z /

$€ESm $€Sm /e_"s (2.116.) u(dby)
b

Consider now the function defined for z € RT by

H/ —onad(8.110:) 1 ().

SES

028 (d81m )

(s ) —nsd 0||0) (dﬁs)

All integrals being absolutely convergent the derivation under the integral is
possible around z = 1, and one gets:

tog [ pron ilz) ™ = 3 nuh (6) - 22, (6.19)

i=1 SESm

2
Ps.p (d0m|m)

But f'/f = (log f)', so let us compute log f(z) for z > 0 :
log f(z) = 3 log / end(0:110:) (g, )

SES
=3 {”fn ) +log [ e “"*[”””“(g“”"sﬂu(des)} |
SES 22

The exact value of the integral is known in terms of the Gamma function (thanks

o ((3.3)):

ana[h(@)+a(8.110.)] _ - i 1) @
log/ze u(dbs) =C+ Zlogf zal + 5 logT (oms + 2) ,

i=1

where C' does not depend on z. Taking the derivatives in = 1 of these expres-
sions and using lemma 3 we finally get:



22 J.-P. VERT

a—1
<> =
SES
a—1
- 2

D,

and coming back to (6.19) we obtain:

N
- -1
log [] P ilz) ™ < 3 moh (8) + “5=Dm. O
i=1 SESm

z{
Ps.p (d0m|m)

Let us use the notation:

Vme MV € (X x V)N Am,2) = ][ /e_"sd(g"w’),u(es)dﬂs. (6.20)
SES, 2

Using (6.18) and (6.19) we get the following equality, for any m in M :

N
E,, o (mdsm) 108 [ | Pm.s.. (Wil

=1

3 A (o) e Xeen ) (Z noh (8) + = 1Dm)

)—ﬂ

< meM sEmM
= Z 7 (m) A (m,Ziv) e~ Zsem ﬂsh(gs)
meMmM
> #(m)g(m)eim
< meM
- Z 7 (m) e=9(m) ’

meM
with, for all m in M:

7 (m) =7 (m) %5 Dm ) (m,z1),
. - a—1
gm)= 3 ns(8,0h (0:(8,8)) + ——Dm
meM
N a—1
= sup lo Dm0, (Yi|Ti -4 ——D,,.
, S gg 0. (Yilzi) 5
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Introducing a threshold € to be optimized afterwards and using the fact that

xze~? is upper bounded by e~! on R, this expression can be upper bounded for
any particular m € M by:

> @ (m)g(m)e 9™

meM
> & (m)e8m
meM
Y 7 (m)[(G(m) —e),]e 7™
S €+ meM
> & (m)eim
meM
> #(m) [(3(m) —€),] e @™
meM
<e+exp(—e) Zﬁ-(m)e o
meM
et Z i (m
S €+ exp (_6) meM

7 (m) e 9(m

Taking e = —1+1log>_, . T (m) —log# () + g (m), we finally get:

N
E, om0, 108 [ [ Pm,o.. (vil2:) ™7 < g (m) +log = 7y +los o
i=1 meM

This proves the following lemma:

LEMMA 5. For anym' in M,

-1
sup g (m',0m) < a—Dm + Epn~ log +10g Z
0,1 €O, .1 2 meM
with

7 (m) = 7 (m) exp (0“1 ) 11 /exp —ns(B, B)d (8,(8, £)116,)] 1 (6,) db.

SESH,

Lemma 5 shows that the bound on 73 (m,6,,) is the sum of a parameter risk
(e = 1)D,, /2 and a model risk —log@(m)/ (3, 7(m)), but with a functional 7
different from the prior distribution 7. Besides, the ratio between 7 (m) and 7 (m)
is the product of two terms:

e a term that only depends on the size of m : exp ((a — 1) Dy, /2);
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e a term that depends on the unobserved 6,,(3,8) :

[T [ exo-nu(s.0d (0.(5.0)16.)] (6

SES,

The reason why we decided to take p equal to Jeffrey’s prior is that it makes
the second term asymptotically independent of 8 (at least inside of the simplex),
thanks to the following lemma:

LEMMA 6. For any (n,0) € Rf x X let f be the function,

f(n,0) =log rrg))a += 5 " log <2%> —log (/E e‘"d(g”o),u(de)> :

This function satisfies:

a? Q

) + b)) < ) < — T . AN &

PROOF OF LEMMA 6:. The upper bound is proven in [26, lemma 1] for n € N
and 6 being of the form (a; /n, ... ,a,/n) with (ai,... ,aq) € N*. The proof, based
on Stirling’s formula to approximate the I" function, still works in the general case
(n,0) € RY x X.

However the proof used for the lower bound in that case ([26, lemma 2]) does
not work in the general case. Therefore let us just prove the lower bound. Using
(3.3) f can be rewritten as:

- S oa—1 2 o1 o
f(n,0) = —nh (9) + Tlog; —glogI‘ (n0 + 5) +logT (n+ 5),

whose derivative w.r.t. n is equal to :

af , - noa—1 g 5i 1
6—£(n,0) = —h(8) - o‘2n —;9% (n0’+ 5) + o (n+ %)

(67

-1 K 1 _
—- ;a [% (nﬁ’ n 5) “log (naz)] + 1o <n+ %) “logn

< 271l gpe-
- 2n 2n

<0
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where we used lemma 3 in order to obtain the inequality. As a result, for any given
6 € %, the function n — f(n,6) is decreasing on R} . Besides, Laplace method of
integration shows that for any € in the interior of the simplex,

Jim_f(n,6) = 0.

As a result, f(n,0) > 0 for any n > 0 and  in the interior of the simplex. Now if
6 is on the boundary of the simplex, one can consider a sequence (Or) k>0 of points
in the interior of the simplex which converges to . By the theorem of dominated
convergence for a fixed n > 0 the integrals [, exp (—nd(6||)) u(df) converge to
[, exp (—nd(8]|6)) p(dB) as k — co. As a result the lower bound that we proved in
the interior of the simplex remains true on its border, for any n > 0. This proves
lemma 6. O

If 7 is a prior on M, consider now the Gibbs estimator formed with the prior 7
such that:

VYm e M 7 (m) = 7 5 QT_Ql
ftd) Ca—l
sgm ("s)
1 s T
= 5™ (m) H Ca <2ne) ’
SESH

where Z is a normalizing constant and C,, = T'(1/2)®/T(a/2) = 7%/? /T (a/2).

Note that X is observed so ng is an observed variable which is invariant under
permutation of 2V, and therefore @ can be taken as a prior to form the Gibbs
estimator. For such a choice, lemma 5 is valid with the following 7:

#(m) = 7 (m) exp (C‘T_lpm> A (m, =)

Lo TI e B10)) .10

= 7 (m)

a—1

s, B o =
3 o (%)

Using lemma 6 we obtain the following bound:

) 1 a? a
log ™ EM <1 @ % ).
B m) = Bam) EZS: <4ns iy ming (0;) + 2)
Finally, using lemmas 5 we get:

YV (m,6n) € O,
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a—1 1 a? a
0,,) < D log —— _— .
8 (M, 0m) < —5—Dim + 8 ) +SGZS (4ns+4nsmin,~(0,~)+2>

Applying theorem 3 finishes the proof of theorem 1. O

7. Conclusion Our goal in this paper was to adapt the idea of twice-universal
codes studied in universal compression to the problem of statistical density esti-
mation. The similarity between the redundancy criterion in compression and the
cumulated statistical risk justifies this goal, but some technical works has to be
done in order to get a bound on the statistical risk of the estimator, and not on
the cumulated statistical risk for samples of increasing sizes. We could get a re-
sult for a mixture estimator by using a Gibbs estimator as studied by Catoni in
[9] and translating double-mixture codes ([14], [24]) into double-mixture statistical
estimators.

The implementation procedure we suggest in section 5.2 takes the form of a
penalized maximum likelihood model selection, justified by the selection of the
model with highest posterior Gibbs distribution. However the Gibbs estimator is of
a mixture of models and one could also imagine a approximation of this mixture
using Monte Carlo simulations, instead of selecting one particular model (see [10],
6]).

As far as applications of such estimators are concerned, we refer to [23] for an
example in natural language processing. It is shown how to use adaptive models
in order to represent non-stochastic objects, e.g. texts, from which a statistical
experiment is carried out. Such a representation can then be used to characterize
the original object; as an application the similarity between two objects can be
estimated by computing the similarity between the two corresponding models.
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