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Diffusion Kernels

Rist Kondor
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Graphs are one of the simplest types of objects in mathematics. In chapter ?? we
saw how to construct kernels between graphs, that is, when the individual examples
x € X are graphs. In this chapter we consider the case when the input space X is
itself a graph and the examples are vertices in this graph.

Such a case may arise naturally in diverse contexts. We may be faced with a
network, trying to extrapolate known values of some quantity at specific nodes to
other nodes. An illustrative example might be the graph of interactions between
the proteins of an organism, which can be built from recent high-throughput
technologies. Let’s say we are trying to learn the localization of proteins in the cell,
or their functions. In the absence of other knowledge, a reasonable starting point is
to assume that proteins that can interact are likely to have similar localization or
functions. Other examples of naturally occurring networks include metabolic and
signaling pathways, and also social networks, the World Wide Web, and citation
networks.

In other cases we might be faced with something much more intricate that is not
itself a network, but can conveniently be modeled as one. Assume we are interested
in predicting the physical properties of organic molecules. Clearly, the set of all
known organic molecules is very large and it is next to impossible to impose a
global metric on it or sensibly fit it into a vector space. On the other hand, it is not
so difficult to come up with rules for which molecules are expected to be similar.
The saturation of a single bond or the addition of an extra link to a long carbon
chain is unlikely to dramatically change the global properties of a molecule. We can
ask a human expert to supply us with a set of empirical rules from which we can
build a similarity graph and treat our domain as if it were a network.

The challenge is to build learning algorithms that can exploit such graphical
structures. The modularity of kernel-based learning suggests that information about
the graph should be incorporated in the kernel. Once we have fabricated a good
kernel for the graph, we can plug it into our favorite algorithm (support vector
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machine [SVM], kernel regression, kernel principal component analysis [KPCA],
etc.) and expect the algorithm to perform similarly to how it performs in more
conventional settings.

The function of the kernel is to provide a global similarity metric, whereas graphs
incorporate information on local similarity. The kernel must be able to express the
degree of similarity between any two examples x,x’ € X with fine distinctions in the
degree to which x and x’ are distant from each other in the graph. In contrast, the
graph itself only expresses whether x and x' are neighbors or not. In section 1.1 we
show how the physical process of diffusion suggests a natural way of constructing
a kernel from such local information, and section 1.2 discusses how to compute the
diffusion kernel in specific cases. In section 1.3 we highlight the interpretation of
the diffusion kernel in the context of regularization operators.

In section 1.4 we then apply these ideas to the network of chemical pathways in
the cell and show how this can boost microarray analysis. Finally, section 1.5 recasts
the central ideas of this chapter in a slightly more abstract form and provides an
outlook on their role in generalizing kernel-based learning to not just graphs but a
wide variety of mathematical objects, from finite groups to Riemannian manifolds.

1.1 Random Walks and Diffusion

Positive definite-
ness

Shortest-path
distance
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The role of the kernel k is to provide a similarity metric on the input space X. Let
X be the vertices, labeled from 1 to n, of an unirected graph G. For now, we assume
that G is unweighted, that is, any two vertices ¢ and j in G are either neighbors,
denoted i ~ j, or they are not neighbors, denoted i £ j.

A kernel must also satisfy the mathematical requirements of being symmetric
and positive definite. Recall that positive definiteness means that for any choice of
X1,X2,---,Xm, €X and any choice of coefficients ¢1,¢2, ..., cm €R,

i icicjk(xiaxj) >0,

i=1 j=1

this being the crucial condition for the existence of the feature mapping & : X — F
satisfying k(x,x’) = (®(x), ®(x')). For finite graphs, the kernel can equivalently be
specified by an n xn matrix K, with K; ; = k(x;,X;). Since k and K are essentially
the same object, we shall refer to both as “the kernel” and alternate between the
two notations depending on whether we want to emphasize the functional or the
matrix aspect.

The simplest measure of similarity on G is the shortest-path distance d(¢, ), but
it is not clear how to construct a positive definite function from d. Furthermore, d is
extremely sensitive to the insertion/deletion of individual edges. In many potential
applications, the connectivity information is itself derived from data, and as such
is subject to noise. A more robust similarlity measure, perhaps involving averaging
over many paths, is more desirable.
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Random walks

This leads to the idea of random walks. Recall that a random walk is a process
generating paths zgz12s ...2zp. Starting from a given vertex zg, at each timestep
t=1,2,...,T the new vertex z; is chosen at random from among the neighbors of
z¢—1, each neighbor having the same probability of being selected.

A compact representation of this process is provided by the adjacency matriz
indexgraph!adjacency matrix

1 if i~3j
Aij = .
0 otherwise

or rather the normalized adjacency matriz

Qij = { Y if i~ (1.1)

0 otherwise

where v, is the degree of vertex j, that is, the number of edges incident at j. It is
easy to see that if p,= (pgt), pgt), ey pgf))T describes the probability of finding the
random walker at each vertex at time ¢, then pyyr1 = @p;. We say that @ is the
transition matrix of the random walk. Applying this relation recursively shows that

raising the normalized adjacency matrix to the power 7',
Pr=Q", (1.2)

gives the matrix whose i,j element describes the probability of a random walker
starting from j being found at i at time 7'.

Generally, random walks have a tendency to meander about close to their origin.
This is because when i and j are close and T is reasonably large, in most graphs
there is a very large number of possible length T' paths from ¢ to j. When i and
J are far apart the choice of paths is much more restricted and [Pr];; will be
correspondingly small. Unfortunately, Py is not suitable as a kernel, for a number
of reasons:

1. There is no clear prescription for how to choose T'. Any choice less than
the diameter of G will lead to pairs of vertices not reachable from one
another, and a corresponding absolute cutoff in the kernel. Kernels with
such limited horizon do not have a sense of the global structure of G. On
the other hand, choosing too large a T' might make the peak of [Pr]; ;
around ¢ very flat, resulting in a kernel unable to differentiate betweeen
nearby vertices.

2. If the graph has symmetries, particular choices of 7' might make certain
vertices unreachable. For example, if G is just a cycle, an even number of
steps could never take us from vertex i to either of its neighbors. Similarly,
if T is odd, we could not get back to the vertex we started from.
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3. Finally, and most seriously, Pr is generally not positive definite; in fact,
it is not even guaranteed to be symmetric.

To see how to overcome these difficulties we first need to take a brief detour to
continuous spaces. Physical ideas borrowed from the continuous case will help us
construct a modified random walk leading to a natural kernel on G.

One of the most popular kernels on X=R" is the Gaussian radial basis function
kernel (Gaussian RBF or just Gaussian kernel)

]. 12 2
k(x,x') = ——— e 7IIx=x"17/(2%) 1.3
o) = (13)

with length scale parameter o. It may not be immediately obvious from its func-
tional form, but the Gaussian kernel is positive definite on RY.
The Gaussian has many famous properties, but for now we are going to concen-
trate on the fact that fixing x' = xo and letting t = 0/2,
1

(4mt) N/2

is the solution of the diffusion equation

e~ llx—x0l1/(4t)

kxo (X7 t) =

gk (Xt)— 6_2+6_2+ +6—2
gt o 2 2 9%y,

kxo (X, 1), (1.4)
6x(1) 6x(2) 0

with Dirac delta initial conditions kx, (x,0) = §(x — x¢). Here we use parenthesized
indices to make it clear that we are differentiating with respect to the ith coordinate
and not the ith training example. The second-order differential operator in (1.4)
is called the Laplacian and is often denoted simply by A, reducing the diffusion
equation to

0
ot
The physical meaning of these equations is clear: (1.5) describes how heat, gases,
and so on, introduced at xg, diffuse with time in a homogeneous, isotropic medium.
In learning theory, using the Gaussian kernel amounts to evoking a similar picture
of the diffusion of labels y1,ys, ...,y in X. Every learning algorithm must make
some sort of assumption about how similarity between inputs x, x' € X will lead to
similarity between the corresponding outputs (labels) y,y’. The assumption behind
the Gaussian kernel is essentially that y(z) is to be approximated by diffusing the
training labels to the rest of X. Using a sophisticated algorithm such as a SVM
complicates the picture somewhat, but the underlying idea remains the same.

Ko (X, 1) = A ki (X, £). (1.5)
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Diffusion on
graphs

Graph Laplacian

Properties of
diffusion kernels

Now we ask how to transplant these ideas to the discrete setting, in particular, to
when X is a graph. Going back to the idea of random walks, the key modification
we make to (1.2) is to make time continuous by taking the limit

§—00

Ks = lim <I+ %L) s€N, (1.6)

which corresponds to a random walk with an infinite number of infinitesimally
small steps (I is the identity matrix and S is a real parameter). The time evolution
of this “continuous time random walk” is now governed by the matrix L, which we
again define as a close relative of the adjacency matrix,

1 if i~
Lij={ —v ifi=j (1.7)

0 otherwise.

The negative elements on the diagonal serve the same function as dividing by
v; in (1.1): their presence guarantees that each column of Kpg, regarded as a
probability distribution over vertices, remains normalized. In spectral graph theory
L is known as the graph Laplacian, already suggesting that we are on the right
track in developing the analogy with the continuous case. The kernel (1.6) we call
the diffusion kernel or the heat kernel on G.

By analogy with the exponentiation of real numbers, the limit in (1.6) is called
the matrix exponential of L:

L s
ePl = lim <I+ %) sEN. (1.8)

§—00

Note that e?” yields a matrix, but is not equivalent to componentwise exponentia-
tion J;; = ePLii. Matrix exponentiation shares many properties with the ordinary
exponential function, including the power series expansion

2 B3
e5L=I+ﬂL+7L2+EL3+...

and the fact that e®” satisfies the differential equation

0
BL _ 1 AL
a5 e LeP™. (1.9

One important difference is that in general the identity

oB(A+B) _ BA BB

does not hold in the matrix case.
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An important effect of defining kernels in such an exponential form is that we
get positive definiteness “for free,”

s 2s
el = lim (I+ B—L> = lim (I+ ﬁ—L>
S 2 2s

as can be seen by writing

and appealing to the well-known fact that any even power of a symmetric matrix is
always positive definite. In fact, it is possible to prove that any continuous family
of positive definite matrices Kg indexed by a real parameter § in such a way that
Ko =1 is of the form Kz = e’ for some symmetric matrix H.

The diffusion kernel will generally increase with increasing shortest-path distance
between vertices, but there is no simple one-to-one relationship between d and Kg.
Rather, it is helpful to think of K in terms of actual physical processes of diffusion.
The function of the parameter 8 is to control the extent of the diffusion, or to
specify the length scale, similarly to ¢ in the Gaussian kernel.

The correspondence between diffusion kernels and the Gaussian kernel is spelled
out even more clearly by considering an infinite regular square grid on RV . Restrict-
ing ourselves to two dimensions for notational simplicity and labeling the vertices
with their integer coordinates, the Laplacian becomes

1 if i3=j1 and ia=jy+1
L(z'1 i) = 1 if i9=j2 and i1 =51 £1
TR —4 if i1 =j1 and iy=j
0  otherwise.

Applied to a function f: X — R [regarded as a vector indexed by (i1,i2) pairs],
this gives

(Lf)ihiz = fil,i2+1 + fil,iz—l + fi1+1,i2 + fil—l,iz - 4fi1,i27

which is a well-known formula for the finite differences discretization of the con-
tinous Laplace operator A, commonly used in the numerical solution of partial
differential equations. Hence, L can be regarded as just the discretized counterpart
of A, and, correspondingly, K can be regarded as the discretized Gaussian RBF.
The correspondence can be made exact by proving that in the limit of the grid
spacing going to zero, K will indeed approach the Gaussian kernel (1.3).

On more general graphs the key to understanding diffusion kernels is the differ-
ential equation (1.9). This expresses that starting from the identity matrix Ko =1,
the kernel Kj is generated by successive infinitesimal applications of L. Note that
the Laplacian encodes strictly local information about the graph. However, through
this continuous process expressed by the differential equation, L is lifted to a smooth
global similarity measure on G, which is exactly what a kernel is supposed to be.
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1.2 Computing the Diffusion Kernel

Figure 1.1 Two examples of elementary graphs for which the diffusion kernel can be
found in closed form: the complete graph and the closed chain over seven vertices.

1.2 Computing the Diffusion Kernel

Complete graphs

At this point, the reader might be wondering how he or she might compute the limit
(1.8) on a computer in a finite amount of time. In general, the way to proceed is to
compute the normalized eigenvectors vy, vs,...,v, and corresponding eigenvalues
A1, A2,..., A, of L and exploit orthogonality to write

n s n
L? = E v | = E v Ay,
i=1 i=1

from which

n n 2 n
Pl =T+ (Zv,ﬂ&v?) + <Zv, (,521) v:) +...= Zviem"v;—, (1.10)
‘ i=1 i=1

=1

reducing matrix exponentiation to real exponentiation. Unfortunately, the complex-
ity of diagonalizing the Laplacian is of order n?, which threatens to be computation-
ally more expensive than the learning itself for most learning algorithms. However,
there are a few special graphs for which the diffusion kernel can be computed in
closed form.

In the complete graph of order n every vertex is linked to every other vertex, so
the Laplacian is L;; = 1 —nd;; . In this case (1.9) can be solved explicitly giving

1+ (n—-1)e™

- for i =3
k(i,j) = Ki,; = I
- for i j,
n

showing that with increasing £, the kernel relaxes exponentially to k(i,j) = 1/n.
The asymptotically exponential character of this solution converging to the uniform
kernel is a direct consequence of the form of the diffusion equation. We shall see
this type of behavior recur in other examples.
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When G is a single closed chain, (i, j) can clearly only depend on the distance
d(i, j) along the chain between 4 and j. Labeling the vertices consecutively from 0
to n—1 and fixing ¢ (without loss of generality, taking i =0), ko(j) =k(0, j) can be
expressed in terms of its discrete Fourier transform

n—1 .
Ny L e 2nvj
K(0.9) = kold) = = ;kou) cos === .
The heat equation implies
d
2 ko(3) = ko((j+1)modn) —2ko(j) + ko((j —1) modn),

which after some trigonometry translates into

d -~ 27
— k —2(1l—cos— | k
T =2 (1-c0s22) Ry,
showing that each Fourier coefficient decays independently. Now applying the
inverse Fourier transform, the solution corresponding to the initial condition ko () =
d;,0 at B =0 can be expressed as

n—1 .
. 1 _ 27y
kg(])zﬁ E e~ cos n]’

where w,, = 2 (1 — cos 222). Hence the full kernel is
= 2rv(i—j)
k(i,7) Ze “’”ﬁcosTJ .
v=0

There also exist special solutions for tree-shaped graphs, albeit infinite trees
with no root. A p-regular tree is an infinite graph with no cycles in which every
vertex has exactly p neighbors (figure 1.2). Clearly, such a tree looks the same from
every vertex, so k(Z,j) can only depend on the shortest-path distance d(4,5). Even
for such simple, highly symmetric graphs, the formula for the diffusion kernel is not
trivial and has only recently been derived (Chung and Yau, 1999):

ki g) = 2 /ﬂe‘ﬁ(l‘wﬁﬁcm) sine [ (k—1)sin(d+1)z —sin(d-1z]
(k—1) k2 —4(k—1) cos?z

for d=4d(i,j) > 1, and

2k(k—1) /” exp (=B (1 — 2T cosx)) sin’ z
0

d
T k2 —4(k—1) cos?z o

k(i,i) =

for the diagonal elements. The case of infinite rooted trees can be reduced to p-
regular trees using a trick from physics called the “method of images,” as described
in Kondor and Lafferty (2002).
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Product graphs

Figure 1.2 Left, A few edges of the three-regular tree. The tree extends to infinity in all
directions. Right, The four-dimensional hypercube can be regarded as the complete graph
of order two (two vertices joined by a single edge) “cubed.”

Another way to compute diffusion kernels is to reduce complex graphs to ele-
mentary ones. Specifically, let G; and G2 be two undirected, unweighted graphs
with n; and ns vertices, respectively. The direct product graph G = G; x G5 will
then have mn; - ny vertices labeled by pairs of integers (i1,42), with 1 <4y < mn; and
1 < i < ma. Two vertices (i1,42) and (j1,j2) will then be neighbors either if 4; = j;
and ip ~ jo or if ip = j2 and ¢; ~ j;. The infinite square grid that we encountered
at the end of section 1.1 is an example of such a structure. More generally, also
encompasssing weighted graphs, the adjacency matrix of the product graph will be
related to the adjacency matrices of the factor graphs by

A:A1®I2+11®A2,

where I1 and I> are the nqxn; and noxn» unit matrices, respectively. The Laplacians
are similarly related:

L=Li®L+I1®Ls

and the corresponding diffusion kernel will be the direct product of the diffusion
kernels on the factor graphs:

_ ) 2
Kg=K; @ Kg",
as can easily be seen by plugging this into the diffusion equation

d
55 Ko =LK

and invoking the product rule for differentiation.
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The product graph construction makes it possible to compute diffusion kernels
on the D-dimensional hypercube, regarded as the D-fold power of a complete graph
of order 2:

1— e—ZB d(x,x’) & I)
! _ X,X
k(x,x ) X (m) = (tanhﬂ) ,
where d(x,x") is the Hamming distance betweeen vertices x and x'. More generally,
we may consider products of complete graphs of orders g1, g2, ---gp, and compute
the kernel

?

k(x,x' O<H 1—e Boi di(xx')
1+ (gi—1)e—Bg

where d;(x,x') = 0 if x and x’ match in the ith index and 1 otherwise. This
construction can be used to apply diffusion kernels to learning problems involving
categorical data (Kondor and Lafferty, 2002), assuming D distinct attributes with
91,92, - - - gp possible values.

1.3 Regularization Theory

2004/07/27 11:55

The correspondence between kernel-based algorithms and regularization theory is
now widely recognized in the machine learning community (Smola et al., 1998;
Girosi, 1998; Girosi et al., 1995; Tikhonov and Arsenin, 1977). SVMs, Gaussian
processes, and so on, can all be cast in the form of searching some linear space of
functions H to find f: X — Y minimizing the regularized risk

Reeglf] = ZL (x:),5:) + Q[f], (1.11)
where Q[f] is expressed in terms of a regularization operator P: H — 3 as

alf] = /x (P dx.

Without going into detail, we note that (1.11) expresses a tradeoff between fitting
the training data and generalizing well to future examples. Given a loss function £,
the first term tries to minimize the error of f on the training set, while the second
term stands for the competing objective of restricting f to “desirable” functions
according to some criterion embodied in P. The choice of algorithm corresponds to
choosing L and the choice of kernel to choosing the regularization operator.

When X is a finite graph, f is just a vector, P is a matrix, and the regularization
term becomes

Qf]=1PfI?=fT(PP)f. (1.12)
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Connection
between K and P

Since PTP is symmetric, its normalized eigenvectors v;,vs,...,v, form an or-
thonormal basis, and expressing f as f = Y ., ¢;v;, (1.12) becomes

Qf] = i Aic,
i—1

where A1, A2,..., A\, are the eigenvalues corresponding to vy, vs, ..., v,. The effect
of the regularization term in (1.11) will be to force most of the energy in f to the
low eigenvalue modes of PTP. From the learning theory point of view, our goal is
to make f as smooth as possible, in the sense of making few sudden jumps between
neighboring vertices. Jagged functions are likely to overfit the training data and
not generalize well to future examples. Hence, we are interested in regularization
operators whose eigenfunctions form a progression from the smoothest to the
roughest functions on our graph.

To see how diffusion kernels fare from the regularization theory point of view, it
remains to find the connection between the kernel and the regularization operator
already alluded to. For concreteness, consider support vector regression, which aims
to fit to the data a function f of the form f(x)=(w, ®(x)) for some feature space
vector w by minimizing

1 m
§||w||+CZ|f(Xi) — il
i=1
where | f(x) —y|, is the e-insensitive loss function max {0, | f(x) —y| — €} (Vap-
nik, 1995). As in other kernel methods, the solution of this minimization problem
will be of the form

m
f(X) = Zaik(Xi,X), (113)
i=1
reducing it to finding the coefficients a1, as, ..., a;, minimizing
ZZaiajk(xi,xj)+22|ajk(xj,xi) —Yj |6. (1.14)
i=1 j=1 i=1 j=1

When X is discrete, if we collect the coefficients in a vector, the first term becomes
just o’ Ka. Similarly, the regularization term (1.12) can be written as Q[f] =
a"K(PTP)Ka. Then comparing (1.14) with (1.11) we see that the two can be
made equivalent by setting

PTP=K~' and L(f(x),y) =2C|f(x) - y]..

Since K is positive definite, we may just take P = K —1/2. The relationship between
kernel and regularization is rather direct.
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Specifically, referring back to (1.10), L, K, and P P share the same orthonormal
system of eigenvectors vy, vs, ..., v, and their eigenvalues are related by

MO Zexp(BAP))  APE) = exp(—AP). (1.15)
Furthermore, from the definition of the graph Laplacian (1.7),

M = =0l = Y (i) - ui(x')’,
oo

which can be interpreted as how many edges v; “violates.” Ordering v1,vs,...,v,
so that — A\ < =Xy < ... < —A,, the first eigenvector will always be the constant
function on G with eigenvalue 0. The second eigenvector will tend to be positive
on roughly one half of G and negative on the other half with a smooth transition
in between. The third, fourth, and so on, eigenvectors correspond to successive
subdivisions, all the way to the last eigenvectors, which oscillate rapidly, changing
sign between most pairs of neigboring vertices. Together with (1.15) this shows
that the regularization operator corresponding to the diffusion kernel does indeed
establish a basis of functions on G sorted by smoothness.

The natural analogy is the Fourier basis of sine and cosine functions on RY. In
general, K acts as a smoothing operator, since it dampens the “high frequency”
modes of the Laplacian, while P is a coarsening operator, because it exaggerates
them.

This type of analysis involving operators and their eigensystems (albeit in a
somewhat more rigorous form) is at the center of spectral graph theory (Chung,
1997), some of the cornerstones of which are the Laplacian and the heat kernel. In
fact, we could have motivated this whole chapter purely by regularization ideas, and
derived the diffusion kernel that way, instead of talking about the actual physical
process of diffusion, or appealing to the analogy with the Gaussian kernel.

1.4 Applications

2004/07/27 11:55

In this section we present an application of the diffusion kernel idea to the analysis of
gene expression data and metabolic pathways. We first present in subsection 1.4.1
a graph of gene, called the metabolic gene network, which encodes our current
knowledge of metabolic pathways. We then show how the regularization operator
associated with the diffusion kernel on this graph can be useful for extracting
pathway activity from gene expression data, and illustrate this approach by a short
analysis of gene expression during two cell cycles. More details on this approach
can be found in Vert and Kanehisa (2003b), and more data analysis is presented in
Vert and Kanehisa (2003a).
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GAL10

HKA, HKB, GLK1
PGT1 PFKLPFK2 FBAL
‘ Glucose-6P H Fructose-6P |-~ Fructose-1,6P2 ----=
FBP1
Glucose-1P PGM1, PGM2

Figure 1.3 Top, The first three reactions of the glycolysis pathway, together with the
catalyzing enzymes in the yeast S. cerevisiae. Bottom, The metabolic gene network derived
from these reactions by linking two genes whenever they can catalyze two successive
reactions.

1.4.1 The Metabolic Gene Network

At the molecular level life can be described as an continual flow of chemical reactions
that degrade, synthesize, or transform various molecules for various purposes. In
particular, metabolism encompasses the processes by which energy is provided for
vital processes and activities, and by which new material is assimilated. Metabolic
processes are usually organized into series of chemical reactions, called metabolic
pathways, that take place sequentially in the cell. As an example, glycolysis is
the metabolic pathway in charge of degrading glucose into pyruvate with the
concomitant production of adenosine triphosphate (ATP) molecules. Figure 1.3
(top) shows the first three reactions of glycolysis: addition of a phosphate group to
the glucose molecule to obtain glucose-6P, followed by an izomerization of glucose-
6P into fructose-6P, and by the addition of a second phosphate group to obtain
fructose-1,6P2.

Each reaction in a pathway usually requires the presence of a particular molecule,
called an enzyme, to occur. Enzymes catalyze reactions, that is, they facilitate the
reaction usually by placing the various substrates in a precise spatial configuration.
Most enzymes in biochemistry are proteins synthesized by the cell itself, which
are encoded in the genome of the organism. In Figure 1.3 (top) the enzymes
are characterized by the name of the genes that encode them. For example, the
izomerization from glucose-6P to fructose-6P is catalyzed by the protein encoded
by the gene PGT1 in yeast. When several genes are associated with a single reaction,
it is either because the proteins they encode form a complex, or because several
different proteins can catalyze the same reaction.

The metabolic gene network is derived from the set of metabolic pathways as
follows. It is an undirected graph whose vertices are the genes of a given organism,
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and with an edge between two genes whenever the proteins they encode can
participate in the catalysis of two successive reactions, that is, two reactions such
that the main product of the first one is the main substrate of the second one. As
an example, the local metabolic graph network for the yeast derived from the first
three reactions of glycolysis is shown in Figure 1.3 (bottom).

When all known metabolic pathways are considered, the resulting metabolic gene
network is complex for at least two reasons. First, the same chemical compound
(such as glucose) can be present in different metabolic pathways, and therefore
edges can link genes which catalyze reactions in different pathways. Second, a given
gene can usually catalyze more than one reaction.

In the following we use the metabolic gene network for the yeast Sacchromyces
cerevisiae derived from the metabolic pathways available in the LIGAND database
of chemical compounds of reactions in biological pathways (Goto et al., 2002). The
resulting graph contains 774 nodes linked through 16,650 edges.

1.4.2 Gene Expression

Reactions in a metabolic pathway occur when both the necessary subtrates and
the necessary enzymes are present. As a result, a cell can control its metabolism
by controlling the quantity of each enzyme. Because enzymes are proteins, the
first level of control of their concentrations is the control of gene expression. For
example, in the bacterium FEscherichia coli, the presence of tryptophan inhibits the
expression of the genes that encode the enzymes which catalyze the reactions of
the tryptophan synthesis pathway.

DNA microarray technology enables the monitoring of gene expression for all
genes of an organism simultaneously. It is therefore tempting to try to make sense
of gene expression data in terms of pathways, at least for the genes that encode
enzymes. More precisely, by following the expression of enzyme genes through
various experiments, one can hope to detect activated or inhibited pathways, suggest
new pathways, or detect mistakes in the current pathway databases. As a first step
toward these ambitious goals we now present a method for automatically detecting
activity levels of known pathways by confronting gene expression data with the
metabolic gene network.

1.4.3 Mathematical Formulation

Let us represent the set of genes by the finite set X. The metabolic gene network is
a simple graph I’ = (X, ) with the genes as vertices. The set of expression profiles
measured by DNA microarray for a gene x € X is a vector e(x) € RP, where p is
the number of microarray measurements. By subtracting the mean profile from all
genes, we suppose below that the set of profiles is centered, that is, > .y e(x) = 0.

We formulate our problem as the problem of automatically finding profiles which
exhibit some coherence with respect to the graph topology. Formally speaking, a
profile is a vector v € RP. We don’t require v to be any actual gene expression
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profile, but rather use it to represent some more abstract or hidden information,
such as the quantity of some substance in the cell, or the activity of a pathway.
Intuitively, if v represents the evolution of such a biological quantity, then expression
profiles of genes participating in or affected by this event should exhibit some form
of correlation with v.

For a zero-mean candidate profile v € RP (ie., Y0 v; = 0), let us therefore
call f(x) := vTe(x) the correlation between the profile v and the gene expression
profile e(x). Typically, if v represents the activity level of a pathway where gene x
plays a regulatory role, then f;(x) is likely to be either strongly positive or strongly
negative.

These remarks lead to a key observation. If v represents the activity of a pathway,
then fi(x) is likely to be particularly positive or negative for several of the enzymes
x that catalyze the corresponding reactions. Observed on the metabolic gene graph,
this suggests that f; should have less variations on average between adjacent nodes
if v corresponds to a true biological process than otherwise. Indeed, we can at least
expect some local regularities in the regions of the graph that correspond to the
pathways related to the process.

This is where the diffusion kernel becomes useful. Recall from section 1.3 that
the diffusion kernel K; on the metabolic gene network defines a regularization
operator ;[f] on functions f : X — R that is small when f has little high-frequency
energy. This suggests looking for candidate profiles v such that Q;[f1] be as small
as possible. Writing f; in a dual form f; = K, «, this means requiring a” K« / aTa
to be as small as possible.

On the other hand, minimizing Q;[f1] over v is likely to be an ill-posed or at least
an ill-conditioned problem. First observe that any component of v orthogonal to the
linear span of {e(x) : x € X} does not modify f;. This suggests restricting v to this
subspace, that is, writing v as v = )7, B(x)e(x), and therefore f; = K>3 where
K> is the Gram matrix of the linear kernel K»(x,y) = e(x)%e(y) and 3: X — Risa
dual form of f;. Second, when the linear span of {e(x) : x € X} is large, eventually
the whole space of centered profiles, then a perfectly smooth function might be
found whether or not a ”true” biological correlation exists between the profiles
and the graph. This suggests imposing some form of regularity on v, such as
being close to the directions of natural variations between profiles. This is achieved
by requiring Qs[f1] = B'K28/6'S to be as small as possible. In order to end up
with a computationally feasible formulation, Vert and Kanehisa (2003b) proposed
decoupling the problem as follows: find two different functions f; = Kja and
f2 = KB such that Qq[fi] and Qo[f2] are both small, while f; and f are as
similar as possible. A possible measure of similarity between f; and fs being their
correlations f,", fo, the different goals can be fulfilled simultaneously by maximizing
the following functional:

OéTKlKQ,B
(aT (K2 + 6K1) 0)? (BT (K2 + 6K>) B)

v(a, B) = : (1.16)

[N
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where J is a parameter that controls the tradeoff between regularities of f; and f,
on the one hand, and similarity of f; and fs on the other hand. It turns out that
(1.16) can be seen as a regularized form of canonical component analysis (Bach and
Jordan, 2002), equivalent to the following generalized eigenvalue problem:

( 0 K1K2><a> (K12+5K1 0 ><a>
=p (1.17)
Ky K;q 0 B 0 K22 + 6K ﬂ

As pointed out in Bach and Jordan (2002) and Vert and Kanehisa (2003b) this
problem can be solved efficiently and results in a series of pairs of features
{(,B8:),i=1,...,n} with decreasing values of y(a;, 3;). The corresponding pro-
files can be recovered by v; = ) Bi(%)e(x).

1.4.4 Analysis of a Factor Release

In order to illustrate this method on a real-world example we compared the
metabolic gene network with a collection of 18 expression measurements for 6198
yeast genes, collected every 7 minutes after cells were synchronized in G; by addition
of a factor (Spellman et al., 1998). The original goal of Spellman et al. (1998) was
to detect genes whose expression exhibits periodicity related to the cell cycle.

The analysis that follows is restricted to the 756 genes of the metabolic gene
netwok with an expression profile in this set. The profiles contain 18 points, hence
17 pairs or features with dual coordinates (o, 8;)i=1,...,17 were extracted. We solved
(1.17) using the free and publicly available program Octave.! Following experiments
detailed in Vert and Kanehisa (2003b) the regularization parameter § of (1.16) was
set to 0.01.

Figure 1.4 shows the first two profiles extracted, and table 1.1 contains a list
representative of the genes with highest or lowest correlation with each profile, as
well as the pathways they participate in in the KEGG database.

The first extracted profile is essentially a strong signal immediately follow-
ing the beginning of the experiment. Several pathways positively correlated with
this pattern are involved in energy metabolism (oxidative phosphorylation, tri-
carboxylic acid cycle, glycerolipid metabolism), while pathways negatively corre-
lated are mainly involved in protein synthesis (aminoacyl-tRNA biosynthesis, RNA
polymerase, pyrimidine metabolism). Hence this profile clearly detects the sudden
change of environment, and the priority fueling the start of the cell cycle with fresh
energetic molecules rather than synthesizing proteins. This result highlights the
experimental bias in the data: while the goal of the experiment was to study the
evolution of gene expression during the cell cycle, the strongest signal we detected
is related to the need to synchronize the cells by addition of a factor.

The second extracted profile exhibits a strong sinusoidal shape corresponding to
the progression in the cell cycle experiment, but the first one is more visible than

1. Available at http://www.octave.org.
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Table 1.1 Pathways and genes with highest and lowest scores on the first 2 features
extracted.

Feature | Correlation | Main pathways and genes

1 + Glycolysis/gluconeogenesis (PGK1, GPM2, ALDJ,6),
TCA cycle (CIT2, MDH1,2, SDH1, LSC1), pentose
phosphate pathway (RBK1, SOL4, ZWF1, YGR043C),
glycerolipid metabolism (GPD1,2,3, ALD/,6), glyoxylate
and dicarboxylate metabolism (MDH1,2, CIT2, ICL2),
sulfur metabolism (MET2,14,16,17).

1 - Pyrimidine metabolism (RPA12,84,49,190, RPB2,5,
RPC53, DUT1, TRR1, POL5, URK1, MIP1, PUSI),
purine metabolism (RPA12,34,49,190, RPB2,5, RPC53,
CDC19, APT2, POL5, MIP1), aminoacyl-tRNA biosyn-
thesis (ILS1, FRS2, MES1, YHR020W, GLNJ, ALA1,
CDC(C60), starch and sucrose metabolism (MPS1, HPRS5,
SWE1, HSL1, EXG1).

2 + Pyrimidine metabolism (DEG1, PUS1,3,4, URAL,2,
CPA1,2,FCY1), folate biosynthesis (ENA1,5, BRR2,
HPRS5, FOL1), starch and sucrose metabolism (ENA1,5,
BRR2, HPR5, PGU1), phenylalanine, tyrosine, and tryp-
tophan biosynthesis (TRP2,3,4, ARO2,7), sterol biosyn-
thesis (ERG7,12, HGM1,2).

2 - Starch and sucrose metabolism (CDC7, ENA1, GINJ,
HXK2, HPR5, SWE1, UGP1, HSL1, FKS1, MEK1),
purine and pyrimidine metabolism (POL12, ADK2,
DUT1, RNR2, HYS2, YNKI1, CDC21), fructose and
mannose metabolism (MNN1, PMI}0, SEC53, HXK?2),
cell cycle (CDC7, GIN4, SWE1, HSL1).

the second one because the synchronization in the yeast colony decreased while the

Detection of the experiment progressed. Several genes directly involved in DNA synthesis . Two cell

cell cycle cycles took place during the (YNK1, RNR2, POL12) can be recognized in the list of
genes anticorrelated with the second feature (corresponding to maximum expression
in the S phase). Some pathways such as the starch metabolism have genes which
exhibit either strong correlation or strong anticorrelation with the second profile,
corresponding to the various regimens in the normal cell cycle (e.g., periods of
energy storage alternate with periods of energy consumption).

1.5 Extensions

Weighted graphs  In weighted graphs each edge has an associated weight w;; = wj; >0 or w;; =0 if
i and j are not connected. Weighted graphs can naturally be incorporated in the
diffusion kernel framework by defining the Laplacian as

Wij if 1,75]
L = n e
— Y wy  if =7

2004/07/27 11:55



2004/07/27 11:55

1.5 Extensions

Other kernels

Metric spaces

Riemannian
manifolds

19

The rest of the development follows exactly as in the unweighted case. Unfor-
tunately, no similarly straightforward solution suggests itself for directed graphs
(wsj #wji), since the symmetry of L is essential for the positive definiteness of k.

A different line of generalizing diffusion kernels, expounded in Smola and Kondor
(2003), focuses on replacing e?L with a general expansion in terms of the eigenvalues
and eigenvectors of L,

~ 1
k= i —— v
;v ") V;

for some function r : R — RF. Choosing r(\) = exp(c2)/2) gives the diffusion
kernel, but other choices lead to interesting new kernels such as

r(A) =1+ 02X (regularized Laplacian kernel)
r(A) =(al —X)~P (p-step random walk kernel)
r(A) = cos(mA/4) (inverse cosine kernel) ,

although these generally cannot boast a similarly rich collection of interpretations.

The most farreaching avenue of generalizing the ideas in this chapter involves
applying the same framework to other mathematical objects, not just graphs. The
ideas of diffusion and corresponding regularization are natural and well-studied
concepts on a whole spectrum of different metric spaces. Indeed, the Laplacian
and the spectral theory induced by it are two of the great unifying concepts of
mathematics. For want of space here we can only sketch the wealth of possibilities
this leads to.

For X=R" we have already encountered the Laplacian

A= 62 N 82 N N 62
- 2 2 e 2
Ox(yy 0%y Ix(n)

and we have seen that the explicit solution of the diffusion equation is the Gaussian
kernel

h(x,x) = — 2 ellx—x1/(48)

(4mp)N/2

It should not come as a surprise that the eigenfunctions of K in this case are the
harmonic eigenfunctions

sin(2rk-x) and cos(2wk-x), keRN

with corresponding eigenvalues e~ Il £ 1I*/(48).
The generalization of the Laplacian to curved spaces (Riemannian manifolds) is

1 y
A= m;@-( detggfa,-),
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where g is the metric tensor and 0; denotes differentiation with respect to the ith
coordinate. Plugging this operator into the diffusion equation (1.5) we can solve for
k. Locally the diffusion kernel will be very similar to the Gaussian kernel, but not so
further away, due to the curvature and possibly nontrivial topology. Unfortunately,
there are very few manifolds on which & can be computed in closed form and one
has to resort to using asymptotic expansions.

In various domains, most notably image analysis, data often fall on curved
manifolds embedded in a higher-dimensional space. Constraining the kernel, and
hence the whole learning problem, to this manifold can improve the performance
of learning algorithms. Unfortunately, in most cases the manifold is not known and
may have very complicated geometry. Belkin and Niyogi (2002) and Belkin and
Niyogi (2003) have proposed approximating the manifold by a mesh obtained by
connecting data points, for example, according to a k-nearest neighbor rule. The
diffusion kernel on the manifold can then be approximated by the diffusion kernel
on this mesh, treated as a graph. What is especially attractive in this procedure is
that it provides a natural use for unlabeled data. Unlabeled data points will not,
of course, feature in a support vector expansion such as (1.13), but they can still
play an important role in the learning process as vertices of the mesh, helping to
form a good kernel. This can make learning possible in scenarios where only a very
small fraction of data points are labeled.

Another context in which manifolds appear in learning theory is information
geometry (Amari and Nagaoka, 2000). Consider a family of probability distributions
{py(x)} parameterized by 6 € R?. The natural metric on this space of distributions,
for a variety of reasons that we do not have space to go into here, is the Fisher
metric

9i; = Eq [(0:€0)(0;t0)] = / (0i log p(x|6)) (9; log p(x[6)) p(x|6) dx,

where £y(x) = log p(x|6). The Riemannian manifold this metric gives rise to is called
the statistical manifold. The geometry of such manifolds can get rather involved and
explicit calculations on them are almost never possible. However, a few celebrated
special cases do exist. Lafferty and Lebanon (2003) have shown how the diffusion
kernel can be computed in closed form on the statistical manifold of the spherical
normal family and how it can be approximated for the multinomial family, in which
case the geometry happens to be identical to that of a quadrant of a hypersphere.
Assuming one of these two models generate the data, the kernel between two data
points can be defined as the information diffusion kernel between the model fit
to one and the other. Combined with SVMs, the authors successfully employ this
technique to text classification with impressive results.
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