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Abstract—We propose a new kernel for strings which bor- linear complexity with respect to the lengths of the com-
rows ideas and techniques from information theory and data pared sequences), represent a biologically relevant measu
compression. This kernel can be used in combination with of similarity, be general enough to be applied without tgnin

any kernel method, in particular Support Vector Machines for . hp - e o
protein classification. By incorporating prior assumptions on on different datasets, yet efficient in terms of classifarati

the properties of the alphabet and using a Bayesian averaging a@ccuracy. Such an ideal kernel probably does not_exist, and
framework, we compute the value of this kernel in linear time different kernels might be useful in different situatiofr

and space, benefiting from previous achievements proposed in the |arge-scale or on-line applications, the computation dest
field of universal coding. Engouraging classificqtion resu!ts are ~omes critical and only fast kernels, such as the spectr@n [1
reported on a standard protein homology detection experiment. and mismatch [16] kernels can be accepted. In applications
where accuracy is more important than speed, slower kernels
that include more biological knowledge, such as the Fisher
The need for efficient analysis and classification tools f@13] or local alignment [26] kernels might be accepted ifythe
sequences is more than ever a core problem in most appticatiprove the performance of a classifier.
fields of statistical learning such as computational bipldg  Our contribution in this paper is to introduce a new class
particular, the availability of an ever-increasing quanf of kernels for strings that are both rapid to compute (they
biological sequences calls for efficient and computatignalhave a linear-time complexity in time and memory), while
feasible algorithms to detect functional similarities vieeen still including biological knowledge. The biological knbw
DNA or amino-acid sequences, cluster them, and annotaigge takes the form of a family of probabilistic models for
them. sequences supposed to be useful to model general classes of
Recent years have witnessed the rapid development oprateins. The ones we consider are variable-length Markov
class of algorithms callelernel method$20] that may offer chains, also known as context-tree models [28] or prolsitaili
useful tools for these tasks. In particular, the SupporttMec suffix trees [1]. These models offer three advantages: fivsy,
Machine (SVM) algorithms [4], [24] provide state-of-thd-a have been shown to be useful to represent protein families
performance in many real-world problems of classifying olfi], [9], second, they can have different degrees of geitgral
jects into predefined classes. SVMs have already been dpplig varying the suffix-tree, allowing then to model larger or
with success to a number of issues in computational biologynaller classes of sequences, and third, their structuaelesn
including but not limited to protein homology detection [13 us to derive a kernel that can be implemented in linear time
[15], [16], [19], [2], [26] functional classification of g&s and space with respect to the sequence length. The last two
[17], [25], or prediction of gene localization [11]. A morefeatures would not be shared by more complex models such
complete survey of the application of kernel methods ias hidden Markov models [8]. A second source of biological
computational biology is presented in the forthcoming bodkformation is represented by a prior distribution on the
[21]. models, including the use of Dirichlet mixtures [8] to take
The basic ingredient shared by all kernel methods is tiwo account similarities between amino-acids.
kernel function, that measures similarities between pafrs As opposed to the classical use of probabilistic models to
objects to be analyzed or classified. While early-days SVModel families of sequences [1], [9] or to the Fisher kernel,
focused on the classification of vector-valued objects, fore do not perform any parameter or model estimation. We
which kernels are well understood, recent attempts to udé S\father project each sequence to be compared to the set of all
for the classification of more general objects have resttteddistributions in the probabilistic models, and comparéedént
the development of several kernels for strings [27], [10B][ sequences through their respective projections. Thetiegul
[15], [16], [19], [2], [26], graphs [14], or even phylogeiet kernel belongs to the class of mutual information kernels
profiles [25]. introduced in [23]. Formally, the computation of the kernel
A useful kernel for protein sequences should have sevemalils down to computing some posterior distribution forrpai
properties. It should be rapid to compute (typically, have & sequences in a Bayesian framework. The computation can
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be performed efficiently thanks to a clever factorizationthef models, by considering the following dot product:
family of context-tree models using a trick presented in].[28 _

The resulting kernel can be interpreted in the light of nleise KX Y) = {¢(X), (V)

coding theory [7]: it is related to the gain in redundancy whe def ﬂ(f)/ Py, (X) Py, (YV)r(dby|f). (1)
the two sequences compared are compressed together, and not fer Oy

mdependently from o.ne another. i By construction, the kernel (1) is a valid kernel, that be®n
The paper is organized as follows. In Section Il we prese{gthe class of mutual information (M) kernels [23]. Observ
the general strategy of making mutual information keme{fat contrary to the Fisher kernel that also uses probéibilis
from families of probabilistic models. In Section Ill we d&i mogels to define kernel, no model or parameter estimation is
a kernel for protein sequences based on context-tree mOdF'éﬁuired in (1). Intuitively, for any two elements§ andY the
Its efficient implementation is presented in Section IV,dvef arnel (1) automatically detects the models and parameters
proposing a redundancy interpretation of its value in secti it explain bothX andY well.
V. Finally, experimental 'results on a benchmark problem of There is of course some arbitrary in this kernel, both in
remote homology detection are presented in Section VI {he definition of the models and in the choice of the prior
distribution . This arbitrary can be used to include prior
(biological) knowledge in the kernel. For example, if one
Il. PROBABILISTIC MODELS AND MUTUAL INFORMATION  Wants to detect similarity with respect to families of semess
KERNELS known to be adequately modelled by HMMs, then using HMM
models constrains the kernel to detect such similaritiesugé
this idea below to define a set of models and prior distrilmgtio
A (parametric) probabilistic model on a measurable spafer protein sequences.
X is a family of distributions{P,6 € ©} on X, where As the likelihood of a sequence under the models we define
6 is the parameter of the distributioR,. Typically, the set below decreases roughly exponentially with its lengthg, th
of parameters© is a subset ofR", in which casen is value of the kernel (1) can be strongly biased by differences
called the dimension of the model. As an example, a hiddénlength between the sequences, and can take exponentially
Markov model (HMM) for sequences is a parametric modegmall values. This is a classical issue with many string édsrn
the parameters being the transition and emission probiabili that leads to bad performance in classification with SVM [22]
[8]. A family of probabilistic models is a family{ Py,, f € [26]. This undesirable effect can easily be controlled im ou
F,0; € Oy}, where F is a finite or countable set, andcase by normalizing the likelihoods as follows:
0O, c RI™S) for each f € F, where dinff) denotes the ) i
dimension of f. An example of such a family would be akl,(X,Y) = Z w(f)/ Ppo, (X)X Ppo, (Y)MT7(dOy|f).
set of HMMs with different architectures and numbers of feF O

states. Probabilistic models are typically used to modid se . ] )
of elementsX,,..., X, € X, by selecting a modef and whereo is a width parameter anfX| and |Y| stand for the

a choosing a parametér: that best "fits” the dataset, using!engths of both sequences. Equation (2) is clearly a validdie
criteria such as penalized maximum likelihood or maximum @nly the feature extractop is modified), and the parameter

posteriori probability [8]. o controls the range of values it takes.
Alternatively, probabilistic models can also be used to |||. A MUTUAL INFORMATION KERNEL BASED ON
characterize each single elemente X’ by the representation CONTEXT-TREE MODELS

$(X) - (Pfx"f (X))fef,efeef' If the pro_ba@hs'qc models In this Section we derive explicitly a Ml kernel for strings
are designed in such a way that each distribution is rougfseq on context-tree models with mixture of Dirichlet [gio
characteristic of a class of objects of interest, then e réggniext-tree models are Markovian models which define an
resentations(X) quantifies howX fits each class. In this officient framework to describe constraints on amino-acid
representation, eaqh dlstrlputlon can be seen as a filter tBg-cessions in proteins, as validated by their use in [1], [9
extracts fromX an information, namely the likelihood o' pyrichiet priors offer a biologically meaningful estimati
under this distribution, or equivalently how much fits the ¢ the |ikelihood of such transitions by giving an a-priori
class modelled by this distribution. knowledge on the multinomial parameters which parameteriz
Kernels are real-valued functidd : X x X — R that can be Markovian models transitions.
written in the form of a dot produd€(X,Y") = (¢(X),¢(Y)) .
for some mapping) from X to a Hilbert space [20]. Given A- Framework and notations
the preceding mapping, a natural way to derive a kernel Starting with basic notations and definitions, Igta finite
from a family of probabilistic models is to endow the set o$et of sized called the alphabet. Practically speakifigcan be
representations(X) with a dot product, and sé€(X,Y) = thought of the 20 letters alphabet of amino-acids. For argive
(p(X), ¢(Y)). This can be done for example if a prior densitglepth D € IN corresponding to the maximal memory of our
7(f,dfy) can be defined on the set of distributions in th&larkovian models we noté/ the set of strings o shorter



than D, i.e. M = U2 (E*. We defineX = U2 (EP+1)" the

set on which we define our kernel. Observe that we do not
define directly the kernel on the set of finite-length seqasnc
but rather in a slightly more general framework where we
focus on lists of transitions. We thus transform sequentes i
finite lists of D 4+ 1 grams, which can each be divided into a
context (i.e aD-long subsequence of the initial sequence) and
the letter which is next to it. This transformation is justified
by the fact that we will always consider Markovian models of
maximal depthd below. An elemenX’ € X" can therefore be
written asX = {z' = x’x!},_1. n, WhereNx is the cardinal

of X and for alli, 2 € EP*! can be divided into a context
z € EP and an output letter;. We also notez the empty
word.

Note that the seft endowed with a list concatenation oper- Fig. 1. Tree representation of a context-tree distribution
ation, denoted as '+, is an abelian semigroup with idemtica

involution (see [3]). The kernel which we propose in this

paper can be considered as a semigroup kernel (setting agidePrior distributions on context-tree models

renormalization on lengths which we use for practical pur- Having defined a family of distribution®, and recalling
poses) onX, a viewpoint which could make our approact{2), we define in this section a prior probabilityD, df) on
the only valid one to define a kernel oki as a function P, This probability factorizes as(D, df) = n(D)x(d6|D),
of the merger of two lists of transitions, namely of the formyo terms which are defined as follows.
K(X,Y) = ¢(X+Y). Indeed, the Bochner theorem proposed 1) Prior on the tree structure:Fp, is the set of complete
by [3] in the case of abelian semigroups states that apges of depth smaller thaR. Intuitively it would make sense
exponentially bounded kernel admits an integral represiemt to put more prior weight on small trees than on large trees.
of semi-characters omt. This structure fits precisely the|ndeed, the number of different trees with a given number
additive bayesian mixture framework of M| kernels which Wef leaves increases rough|y exponentia”y with the number o
use below. leaves. As a result, small trees would have a very low inflaenc
compared to big trees if their prior probability was not bieds
o ] o Following [28] we define a simple probability on Fp that
Context-tree distributions require the definition of a coMy4 this property by describing a random generation of trees
plete suffix dictionary (c.s.dP, a c.s.d being a finite set of giarting from the root, the tree generation process follows
words of M\{&} such that any left-infinite sequence has gocyrsively the following rule: each node hadshildren with
suffix in D, but no word inD has a suffix irD. We noteL(D)  probability ¢, and0 children with probabilityl — e (it is then a

the length of the longest word containedZmand 7 the set |g4f). |n mathematical terms, this defines a branching mace
of c.s.dD that satisfyL(D) < D. Once this tree structure °

is set, we can define a distribution oYi by attaching one
multinomial distributiod on E, with parameter®, € %, to
each words of a c.s.dD. Indeed, by denotingd = (0;)scp (D) = H c H (1-¢)= Sl (1- E)card{SED\l(s)<D}.
we define a conditional distribution oli which is the product =

B. Context-tree models

If we denote byD the strict suffixes of elements @p, the
probability of a tree is given by:

o SG
of the likelihood of each transition contained i, namely: S€D us)<D @
Nx ; 2) Priors on multinomial parametersFor a given treeD
Ppg(X) = H%(wp(wz)v ) we now define a prior orBp = (3;)P. We assume an
=1

independent prior among multinomials attached to differen

where for any wordn in EP, D(m) is the unique suffix of words with the following form:
m in D.

We present in Figure 1 an example whéfe= {4, B, C}, m(df|D) = H w(db;)-
the maximal depthD is set to 3 and whereD = s€P
{A,AB,BB,ACB, BCB,CCB,C}, with corresponding, Herew is a prior distribution on the simpleX,. Following
parameters fos € D, eachf, being a vector of the three-[28] a simple choice is to take a Dirichlet prior of the form:
dimensional simplexZ2;. We will also notePp = {(D,9) : d d
D € Fp,0 € Op} the set of context-tree distributions of wg(dh) = LMH@@_I)‘(‘M)»
depthD. Vd [Tz T8 =

1%, is the canonical simplex of dimensiehi.e. Xy = {& = (¢;)1<i<q : where X is LEbeSgge’S me_aswe _ar;lﬁ = _(ﬁi)i=1--d is the
£&>0,26 =1} T parameter of the Dirichlet distribution. As it has been obsd



that mixtures of Dirichlet are a more natural way to model Counterp,,(X) keeps track of the frequency of the counter
distributions on amino-acids [5], [18] we propose to usehsuen in the setX while §,, . summarizes the empirical proba-
a prior here. An additive mixture af Dirichlet distributions bility of the apparition of letter after m has been observed.

is defined byn Dirichlet parameterss!,..., 3" and by the Finally a,, .(X,Y) takes into account weightedaverage of
probabilitiesy!, ..., ™ of each mixture (withy";'_, v¥ = 1), the transitions encountered both X and Y. To take into
and has the following definition: account smaller contexts we define the same values when
n goes throughp/, the set of words of length less than.
w(dby) = ZV%Bk (dbs). (5) The most efficient way to compute those counters is to start
=1 defining them whenn only goes through visited contexts,

which are up taVx + Ny, and then benefit from the following

D. Triple mixture mutual information kernel downward recursion on the lenath of the string when
Combining the definition of the kernel (2)W|ththedef|n|t|on0 ard recursion o © engih of the stingwhenm

of the context-tree model distributions (3) and of the prid?0€S through albuffixesof visited contexts:
on the set of distributions (4, 5), we obtain the following
expression for the kernel:

~ Y . X)=3 prmlX)
Ko(X,Y)= Y =(D) Ppo(X)Vx Ppo(Y) ™ [] w(dbs). fEE
DeF ©p s€D ~ m X)o m,e X
P (6) 97,L76(X) _ ZfeEpf- (X) J.m, ( ),
We observe that (6) involves three summations respectively P (X)
over the trees (through priorr), the components of the am.e(X,Y) Zafme (X,Y).
Dirichlet mixtures (through weights), and the multinomial IeE

parameters (througlvs priors). This generalizes the double

mixture performed in [28] in the context of sequence com-

pression by adding a mixture of Dirichlet, justified by ouB. Recursive computation of the triple mixture
goal to process protein sequences.

We can now attach to each for which we have calculated

the previous counters the value:
The definition of the kernel in (6) does not express a

practical way to compute it. To do so, we propose to adapt

IV. KERNEL IMPLEMENTATION

the context-tree weighting algorithm, first introduced i8],
based on a factorization of the kernel along the branches of Kn(X,Y) ZV GB’“ 0 (am,e(X, Y))eeE)’
the context-tree. Let us introduce first a few more notations
We set, givenr € N, 3 = (Bi)i<i<r € (RT™)" and
a = (ag)1<i<r € (RT)": which computes two mixtures, the first being continuous on
r the possible values @f weighted by a Dirichlet prior and the
def/ Ha% = rl“(ﬁ_) [limy Tl + ﬂi), second being discrete by using the different weighted Digic
Zr 21 I T(B) T(a+5) distributions given by the mixturéy*, g*). By defining now

the quantityY,,,(X,Y"), which is also attached to each visited

whereT is the Gamma function3, = >/ 3;, anda, = ;
b = 2t o iword m and computed recursively:

>-r_, a;. The quantityGs(«) corresponds to the averaging o
likelihoodsQ(«) under a Dirichlet prior of parametes for 6

varying in,.. In the following implementation we assume that Kom(X,Y) if {(m) =D
a numerical approximation for the functidig is available. T XY = ’
We can now divide the algorithm into two phases which can m(XY) = q (=) Kn(X,Y)
be computed alongside at each recursive step. +éelloep Yem(X,Y) if I(m) <D

A. Defining counters

The first step of the algorithm is to compute, foe E an
m € EP, the following counters:

g We compute the third mixture over the different possible tre
structures of our complete-suffix dictionary by taking into
account the branching probability Indeed, we finally have,

Nx recalling @ is the empty word, that:
pm(X) =Y U(al =m),
i=1
20 (@i=maj=e) - = :
Do) = { SR () >0 Ko, ¥) = Ya(X¥) @
a else
Pm(X) 4 pm(Y) 4 Proof: In order to prove (7), let us first fix a tree
ame(X,Y) |X| Orm.e(X) + Y| Om.e(Y) D and observe that, forX = (2%, 2});—1. v, and Y =



(Y, Ui )i=1..Ny - where we have used the notatigpQX) = |Tl\~p(X)' Finally
) we have, by defining the renormalized keri#€l as

Ko(X,Y) = Ko(X,Y)/VEe(X, X)Ko (Y,Y),

Ppg(X)¥x Pp (V)™ [] <Z YFwgk (dbs)

Op s€D \k=1
that
_ / H (H es(e)aas,e(X,Y) (Z ’kaﬁk (d95)>> K(X7Y) — e—tﬁ(X,Y)’
OD seD \ecE k=1
t ‘y providing us with a geometrical interpretation, in terms of
=11>.~ / 1 0s(e)7 XY (d6s) convexity of the redundancy function, of the value computed
seDk=1 “¥d \ecE by our kernel.
= H ZW’“GM (0 (a5, (X,Y))oep) = H Ky (X,Y), VI. EXPERIMENTS
seD k=1 seD

- , ) We report preliminary results concerning the performance
where we have used Fubini's theorem to factorize the mteg@} the MI kernel on a benchmark experiment that tests the ca-

in the second line. Having in mind (6), we have thus proveyﬁjacity of SVMs to detect remote homologies between protein
that/Co (X, Y) = 3 pe ), T(D) [1,ep Ks(X,Y). The second yomains. This is simulated by recognizing domains that are
part of the proof is identical to the one given in [28] [6] (O, the same SCOP[12] (ver. 1.53) superfamily, but not in the
which we refer to finalize this result. _ ™ same family, using the procedure described in [13]. We used
The computation of the counters has a linear cost in timg files compiled by the authors of [19]. For each of the 54
and memory with respect Wx + Ny. As only nodes thgt families tested, we computed the ROC (Receiving Operator
correspond to suffixes o' and Y are created, recursive cparacteristic) to measure the performance of a SVM based on
computation ofY,, is also linear (the valued,, on non- o 1y kernel (the ROC score is the normalized area under the
existing nodes _bel_ng eq‘%a' M) As a result, the _computauon curve which plots the number of true positives as a function o
of the kernel is linear in time and space with respect Rise positives). We tested different parameters of oundder
Nx + Ny. and compared its performance with the best mismatch kernel
V. REDUNDANCY ANALYSIS presented in [16], that performs at a state-of-the-art r@ogu

As explained previously, our kerel actually consider§Vel and can be implemented in linear time. The classibeati
a sequence as a set of weighted empirical distributioh@S Iedzusmg the publicly available Gist 2.0.5 implemeatat
{(pm, ém)}meM. These couples are actually used to compu )
the likelihood of such a set with respect to a specific context OUr kérnel has several parameters. The déptthe widtho
tree distribution(D, §) contained in the manifold of all distri- 2nd the branching probabilityare the most elementary to play
butions defined by modeD. This manifold is a submanifold with; the selection of a Dirichlet mixture is a more difficult
of (34)™ which admits the family of multinomial parametersCho'CQ- .Gllven the large number of parameters and .th.e.rlsk
(6,)scs as a coordinate system. The elemefds, s € D} of overfitting the benchmark dataset by carefully optimizin
can thus be seen as the coordinatestoin the submanifold theém, we only report preliminary results with two settings.
associated with moded and weightsp, can be seen as theFirst we used a single Dirichlet distribution with paranste
empirical measure of each present inX. 1/2,...,1/2 (known as the Jeffrey or the Krichevski-Trofimov

We denote bykl(4]|¢") the kullback-leibler divergence be-Prior [28]), with D =5, 0 = 5, ¢ = 0.5. Second, we used a
tween § and ¢, two multinomial parameters of sizé, i.e basic 3 component Dirichlet mixture that models three esss
KI(O]]6") = 3,_, 40;1In z_ We also notéH(¢) the entropy of of 'ami.no-acids (hydrophobic/hydrophilic/highly consedy.
0,ieHO) =, , ,0: I 6. The mixture coding probability This mIth_,II_’e, callec_hydr 0-cons. 3conp, was downloaded
P, on X following the = prior on Fp can be rewritten as afrom a Dirichlet mixture repositofy Other parameters were

simple function ofp andé: settoD =4, 0 =1ande = 0.5. o ,
Figure 2 plots the total number of families for which

P.(p,0) = Z (D) H e—psH(és)/ e—pskl(é.s\\@)w(dg) a given methods exceeds a ROC score threshold. There is

DeFp D a no significant difference between the three methods. The
def mismatch kernel seems to perform better on families withdar
We considerr, = —In P, the redundancy of the coding i i
w s ROC, while the MI kernels tend to outperform the mismatch

probability computed by this mixture. This quantity can bRernel for families with a ROC below.85. This observation
interpreted to express the value of our kernel by defining “T?encouraging as it suggests that Ml kernels might be better
functiont which measures the convexity of onXp| x©p:  adapted to difficult problems, corresponding to low seqaenc
1 R . similarity, than the mismatch kernel, although our kerreel i
tr(X,Y) D) [ G(X)> T (p(Y)ﬁ(Y))} only based on the same features as the spectrum kernel [15]

e (P(X),
. (ﬁ(X) +p(Y) B(X) + é(Y))
T 2 )

2http://microarray. cpne. col unbi a. edu/ gi st/ downl oad. ht m

’ 2 Shtt p: // www. cse. ucsc. edu/ resear ch/ conpbi o/ di richl et s/



which is known to perform worse than the mismatch kerneje]
tested. 7

T T
No mixture —*— ]

b T sy =4 [8
a ‘-\% [9]
[10]
30
1
[11]
20 ”% [12]
(13]
10 =
(14]
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Fig. 2. Performance of three kernels on the problem of reeiggnidomain’s
superfamily. The curve shows the total number of families foicia given  [15]
methods exceeds a ROC score threshold.
VII. CONCLUSION [16]

We introduced a novel class of kernels for sequences that
are fast to compute and have the flexibility to include prior
knowledge through the definition of probabilistic modelsl an17]
prior distribution. The kernel is a mutual infofmation ketn
based on a family of context-tree models, and makes a link
between the string kernels and the theory of universal souits]
coding. On a benchmark experiment of remote homology de-
tection it performs at a state-of-the-art level. Furthesumacy
improvements are expected from a more careful tuning of tfe]
parameters, on the one hand, and from the implementation of
sampling strategies to derive extended sets of transit®ns
from a single sequence:, by incorporating mismatches for[20]
instance.
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